Abstract:Zn3As2 and Zn3P2 have the same pseudo-cubic lattice structure and present a wide range of application prospects in the field of optoelectronic devices because of their high electron mobility, narrow direct band gaps, and good air stability. At present, there is relatively little research on the nanostructure of Zn3As2-Zn3P2 solid solution, and Zn3(As1-xPx)2 (x=0, 0.05, 0.1) master alloys were obtained by high-pressure sintering technology, and then a variety of Zn3(As1-xPx)2 nanostructures are synthesized by chemical vapor deposition, including macro-sized nanoribbons (Length 3~10 mm; Width 1~4 mm; Thickness ~20 μm), nano sails, nanorods and nano silver hairpins. The effect of P doping on phase composition, element content, microstructure, and spectral characteristics was systematically investigated. XRD results showed that the main phase of Zn3(As1-xPx)2 macroscopic nanoribbon samples was α′ phase. With the increase of P doping contents, the (224) diffraction peak shifted to the right, indicating a decrease in the lattice constant. Electron spectroscopy analysis showed that the actual content of P in these nanoribbons corresponding to x=0.05 and x=0.1 Zn3(As1-xPx)2 master alloys was x=0.026 and x=0.062, respectively. The microstructure analysis showed that the growth mode of Zn3As2 macroscopic nanoribbons was along the 〈221〉 crystal face rhombus-shaped layer-like growth and that P doping led to a reduction in the macroscopic size of the nanoribbons, accompanied by growth mode change from rhombus-shaped layered growth to nanoparticle stacked layered growth. Raman spectra of the nanoribbon samples showed characteristic peaks at 79, 97, 198, 320, 428 and 1 107 cm-1. P doping led to a blue shift of 1 107 cm-1 characteristic peaks in Raman spectra, and 1 101 and 1 599 cm-1 characteristic peaks in Fourier infrared spectroscopy (FTIR), and 300, 422, and 635 nm characteristic peaks in PL spectra were also blue-shifted. The linear relationship between photocurrent and voltage of Zn3As2 and Zn3(As0.974P0.026)2 nanoribbons indicate good ohmic characteristics, and the photoresponse of Zn3(As0.974P0.026)2 nanoribbons after P doping shows the highest sensitivity under 900 nm conditions.
王 浩,孙乃坤,庞 超,王志帅,陈上峰,李 武,田 辉,岱 钦. Zn3(As1-xPx)2纳米结构制备及光谱特性研究[J]. 光谱学与光谱分析, 2024, 44(07): 1934-1939.
WANG Hao, SUN Nai-kun, PANG Chao, WANG Zhi-shuai, CHEN Shang-feng, LI Wu, TIAN Hui, DAI Qin. Preparation and Spectroscopic Properties of Zn3(As1-xPx)2
Nanostructures. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(07): 1934-1939.
[1] Stutz E Z, Friedl M, Burgess T, et al. Physica Status Solidi-Rapid Research Letters, 2019, 13(7): 1900084.
[2] Burgess T, Caroff P, Wang Y, et al. Nano Letters, 2015, 15(1): 378.
[3] Chen G, Liu Z, Liang B, et al. Advanced Functional Materials, 2013, 23(21): 2681.
[4] Misiewicz J, Jezierski K. Handbook of Optical Constants of Solids. Academic Press, 1997. 595.
[5] Kaur M, Kabra K, Kumar R, et al. Journal of Alloys and Compounds, 2017, 709: 179.
[6] Lin-Chung P J. Physical Review Journals Archive, 1969, 188(3): 1272.
[7] Kouklin N, Sen S, Gajdardziska-Josifovska M. Applied Physics Letters, 2006, 89(7): 071901.
[8] Engelbrecht J A A, Scriven G J, Neethling J H, et al. Journal of Crystal Growth, 2000, 216(1-4): 235.
[9] Scriven G J, Leitch A W R, Neethling J H, et al. Journal of Crystal Growth, 1997, 170: 813.
[10] Neethling J H, Scriven G J, Krekels T. Journal of Materials Science, 2001, 36: 3997.
[11] Chelluri B, Chang T Y, Ourmazd A, et al. Applied Physics Letters, 1986, 49(24): 1665.
[12] Chelluri B, Chang T Y, Ourmazd A, et al. Journal of Crystal Growth, 1987, 81(1-4): 530.
[13] Im H S, Park K, Jang D M, et al. Nano Letters, 2015, 15(2): 990.
[14] Li J, Wang L S, Buchholz D B, et al. Nano Letters, 2009, 9(5): 1764.
[15] Misiewicz J, Pawlikowski J M. Solid State Communications, 1979, 32(8): 687.
[16] Botha J R, Scriven G J, Engelbrecht J A A, et al. Journal of Applied Physics, 1999, 86(10): 5614.
[17] Glassy B A, Lai N L, Cossairt B M. Chemistry of Materials, 2017, 29(15): 6195.
[18] Szatkowski J, Sierański K. Journal of Physics and Chemistry of Solids, 1990, 51(3): 249.
[19] Misiewicz J, Wróbel J M, Jezierski K. Solid State Communications, 1993, 86(8): 509.
[20] Zanin I E, Aleinikova K B, Afanasiev M M, et al. Journal of Structural Chemistry, 2004, 45: 844.
[21] Sierański K, Szatkowski J, Hajdusianek A. Physica Status Solidi A, 2016, 214(5): 1600553.
[22] Lombardi G A, Oliveira F M, Teodoro M D, et al. Applied Physics Letters, 2018, 112(19): 193103.
[23] Sudhakar S, Nagarajan M, Baskar K. Physica Status Solidi C, 2012, 9(7): 1636.
[24] Paul R, Humblot N, Steinvall S E, et al. Crystal Growth & Design, 2020, 20(6): 3816.
[25] ZHENG Bao-feng, YANG Xiao-yun, MIN Chun-gang, et al(郑堡峰,杨晓云,闵春刚,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2020, 40(3): 809.
[26] Engelbrecht J A A, Hashe N G, Brink D J. Infrared Physics & Technology, 2002, 43(2): 113.
[27] Pangilinan G, Sooryakumar R, Chelluri B, et al. Physical Review Letters, 1989, 62(5): 551.
[28] Misiewicz J. Infrared Physics & Technology, 1994, 35(6): 781.
[29] Hanuza J, Lemiec A, Misiewicz J. Vibrational Spectroscopy, 1998, 17(1): 93.
[30] Sujak-Cyrul B, Kolodka B, Misiewicz J. Journal of Physics and Chemistry of Solids, 1982, 43(11): 1045.
[31] Turco-Sandroff F S, Brasil M J S P, Nahory R E, et al. Applied Physics Letters, 1991, 59(6): 688.
[32] Yu G, Liang B, Huang H, et al. Nanotechnology, 2013, 24(9): 095703.
[33] Yang R, Chueh Y L, Morber J R, et al. Nano Letters, 2007, 7(2): 269.