Estimation of Chlorophyll Content in Potato Leaves Based on
Machine Learning
LI Cheng-ju1, 3, LIU Yin-du1, 3, QIN Tian-yuan1, 3, WANG Yi-hao1, 3, FAN You-fang1, 3, YAO Pan-feng2, 3, SUN Chao1, 3, BI Zhen-zhen1, 3*, BAI Jiang-ping1, 3*
1. College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
2. State Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
3. Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
Abstract:To improve the accuracy of the photo chlorophyll content estimation model, the remote sensing images of different growth stages of potatoes under control and drought treatments were obtained using a multi-spectral camera on a UAV platform. Thirteen vegetation indices were selected as input variables of the chlorophyll content inversion model, and the estimation model of potato chlorophyll content was constructed by using multiple linear regression (MLR), support vector regression (SVR), random forest regression (RFR) and decision tree regression (DTR). Correlation analysis between vegetation index and chlorophyll content showed that at the tuber formation stage of the control treatment, the absolute values of correlation coefficients between CIre, GNDVI, NDVIre, NDWI, GRVI, LCI and chlorophyll content were above 0.5, and their were significant (p<0.05) or highly significant (p<0.01) correlations. In other growth stages of potato, the absolute values of correlation coefficients between 13 vegetation indexes and chlorophyll content were all above 0.5, which was a highly significant correlation (p<0.001). In addition, the accuracy of MLR, SVR, RFR and DTR models were compared. The results showed that the SVR model has the best prediction effects in the tuber formation stage, tuber expansion stage and starch accumulation stage of the control treatment. The control treatment's R2 and RMSE were 0.89 and 2.11 in the tuber formation stage, 0.59 and 4.03 in the tuber expansion stage, and 0.80 and 3.18 in the starch accumulation stage. The RFR model produces the best prediction effects in the tuber formation, tuber expansion, and starch accumulation stages of the drought treatment. The outcomes of R2 and RMSE on drought treatment were 0.90 and 1.57 in the tuber formation stage, 0.87 and 2.16 in the tuber expansion stage, and 0.63 and 3.01 in the starch accumulation stage. This study presents a new approach for monitoring the chlorophyll content of potatoes, and a corresponding estimating model can be selected based on the specific potato growth stage and different experimental treatments in future.
Key words:Potato; Chlorophyll content; Multispectral; Support vector regression; Random forest regression; Decision tree regression
李成举,刘寅笃,秦天元,王一好,范又方,姚攀锋,孙 超,毕真真,白江平. 基于机器学习的马铃薯叶片叶绿素含量估算[J]. 光谱学与光谱分析, 2024, 44(04): 1117-1127.
LI Cheng-ju, LIU Yin-du, QIN Tian-yuan, WANG Yi-hao, FAN You-fang, YAO Pan-feng, SUN Chao, BI Zhen-zhen, BAI Jiang-ping. Estimation of Chlorophyll Content in Potato Leaves Based on
Machine Learning. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 1117-1127.
[1] SUN Gang, HUANG Wen-jiang, CHEN Peng-fei, et al(孙 刚, 黄文江, 陈鹏飞, 等). Transaction of the Chinese Society for Agricultural Machinery(农业机械学报), 2018, 49(3): 1.
[2] Amirruddin A D, Muharam F M, Ismail M H, et al. Computers and Electronics in Agriculture, 2020, 169: 105221.
[3] Pinkard E A, Patel V, Mohammed C. Forest Ecology and Management, 2006, 223(1-3): 211.
[4] WANG Pei, LUO Xi-wen, ZHOU Zhi-yan, et al(汪 沛, 罗锡文, 周志艳, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2014, 30(18): 1.
[5] Jin X, Zarco-Tejada P, Schmidhalter U, et al. IEEE Geoscience and Remote Sensing Magazine, 2021, 9(1): 200.
[6] YU Feng-hua, XU Tong-yu, GUO Zhong-hui, et al(于丰华, 许童羽, 郭忠辉, 等). Smart Agriculture(智慧农业), 2020, 2(1): 77.
[7] SU Wei, WANG Wei, LIU Zhe, et al(苏 伟, 王 伟, 刘 哲, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2020, 36(19): 58.
[8] WANG Xu, DENG Yu-shuai, LIAN Xue-meng, et al(汪 旭, 邓裕帅, 练雪萌, 等). Sugar Crops of China(中国糖科), 2022, 44(4): 36.
[9] LIU Shuang, YU Hai-ye, ZHANG Jun-he, et al(刘 爽, 于海业, 张郡赫, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2021, 41(6): 1912.
[10] WANG Dan, ZHAO Peng, SUN Jia-bo, et al(王 丹, 赵 朋, 孙家波, 等). Shandong Agricultural Sciences(山东农业科学), 2021, 53(6): 121.
[11] TIAN Ming-lu, BAN Song-tao, CHANG Qing-rui, et al(田明璐, 班松涛, 常庆瑞, 等). Transaction of the Chinese Society for Agricultural Machinery(农业机械学报), 2016, 47(11): 285.
[12] CHEN Peng, FENG Hai-kuan, LI Chang-chun, et al(陈 鹏, 冯海宽, 李长春, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2019, 35(11): 63.
[13] Singh A, Ganapathysubramanian B, Singh A K, et al. Trends in Plant Science, 2016, 21(2): 110.
[14] WANG Nian-yi, YU Feng-hua, XU Tong-yu, et al(王念一, 于丰华, 许童羽, 等). Acta Agriculturae Zhejiangensis(浙江农业学报), 2020, 32(2): 359.
[15] LIU Tan, XU Tong-yu, YU Feng-hua, et al(刘 潭, 许童羽, 于丰华, 等). Transaction of the Chinese Society for Agricultural Machinery(农业机械学报), 2020, 51(5): 156.
[16] WANG Li-ai, MA Chang, ZHOU Xu-dong, et al(王丽爱, 马 昌, 周旭东, 等). Transaction of the Chinese Society for Agricultural Machinery(农业机械学报), 2015, 46(1): 259.
[17] Shah S H, Angel Y, Houborg R, et al. Remote Sensing, 2019, 11(8):920.
[18] CHEN Chun-ling, JIN Yan, CAO Ying-li, et al(陈春玲, 金 彦, 曹英丽, 等). Journal of Shenyang Agricultural University(沈阳农业大学学报), 2018, 49(5): 626.
[19] LIU Jing, CHANG Qing-rui, LIU Miao, et al(刘 京, 常庆瑞, 刘 淼, 等). Transaction of the Chinese Society for Agricultural Machinery(农业机械学报), 2016, 47(8): 260.
[20] LUO Xiao-bo, XIE Tian-shou, DONG Sheng-xian(罗小波, 谢天授, 董圣贤). Transaction of the Chinese Society for Agricultural Machinery(农业机械学报), 2023, 54(4): 198.
[21] WANG Xiao-bin, WANG Han, HU Kai-ming, et al(王晓斌, 王 瀚, 胡开明, 等). Journal of Plant Genetic Resources(植物遗传资源学报), 2017, 18(6): 1067.
[22] LIU Tao, ZHANG Huan, WANG Zhi-ye, et al(刘 涛, 张 寰, 王志业, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2021, 37(19): 65.
[23] XI Xue, ZHAO Geng-xing(奚 雪, 赵庚星). Chinese Agricultural Science Bulletin(中国农学通报), 2020, 36(20): 119.
[24] Fei Shuai-peng, Hassan M A, He Z H, et al. Remote Sens, 2021, 13(12):2338.
[25] ZHANG Shao-hua, DUAN Jian-zhao, HE Li, et al(张少华, 段剑钊, 贺 利, 等). Acta Agronomica Sinica(作物学报), 2022, 48(7): 1746.
[26] FAN Hong-ye, LI Yao-yao, LU Xian-ju, et al(樊鸿叶, 李姚姚, 卢宪菊, 等). Journal of Agricultural Science and Technology(中国农业科技导报), 2021, 23(9): 112.
[27] GU Feng, DING Jian-li, GE Xiang-yu, et al(顾 峰, 丁建丽, 葛翔宇, 等). Arid Zone Research(干旱区研究), 2019, 36(4): 924.
[28] MA Chun-yan, WANG Yi-lin, ZHAI Li-ting, et al(马春艳, 王艺琳, 翟丽婷, 等). Transaction of the Chinese Society for Agricultural Machinery(农业机械学报), 2022, 53(6): 217.
[29] DONG Yang-cheng, CAI Bing-xiang, WANG Fu-min, et al(董羊城, 蔡炳祥, 王福民, 等). Bulletin of Science and Technology(科技通报), 2019, 35(6): 58.
[30] ZHU Man, ZHANG Li-fu, WANG Nan, et al(朱 曼, 张立福, 王 楠, 等). Remote Sensing Technology and Application(遥感技术与应用), 2021, 36(4): 936.
[31] PEI Hao-jie, FENG Hai-kuan, LI Chang-chun, rt al(裴浩杰, 冯海宽, 李长春, 等). Jiangsu Agricultural Science(江苏农业科学), 2018, 46(17): 224.
[32] Song Zhishuang, Zhang Zhitao, Yang Shuqin, et al. Computer Electronics in Agriculture, 2020, 179: 105812.
[33] Moshou D, Pantazi X E, Alexandridis T, et al. Computers and Electronics in Agriculture, 2016, 121:57.
[34] Yue Jibo, Feng Haikuan, Yang Guijun, et al. Remote Sensing, 2018, 10(1): 66.
[35] TAO Hui-lin, FENG Hai-kuan, XU Liang-ji, et al(陶惠林, 冯海宽, 徐良骥, 等). Jiangsu Journal of Agricultural Science(江苏农业学报), 2020, 36(5): 1154.
[36] Cavallo D P, Cefola M, Pace B, et al. Computers and Electronics in Agriculture, 2017, 140: 303.
[37] ZHANG Zhuo-ran, CHANG Qing-rui, ZHANG Ting-long, et al(张卓然, 常庆瑞, 张廷龙, 等). Journal of Northwest A&F University(西北农林科技大学学报), 2018, 46(11): 39.