Research Progress and Trend of Gas Raman Sensing Enhancement Technology
WAN Fu1, 2, GE Hu1, 2, LIU Qiang1, 2, KONG Wei-ping1, 2, WANG Jian-xin1, 2, CHEN Wei-gen1, 2
1. College of Electrical Engineering, Chongqing University, Chongqing 400044, China
2. State Key Laboratory of Power Transmission and Distribution Equipment and System Safety and New Technology, Chongqing
400044, China
Abstract:Whether in scientific research, food safety, medical testing, or in the fields of safety accident prevention, fast, accurate, qualitative and quantitative analysis of multi-component mixed gases has become an urgent need. Raman spectroscopy is a powerful gas sensing method. It can overcome the shortcomings of traditional non-spectroscopic methods, such as long detection time and poor repeatability, and it can also make up for the shortcoming of absorption spectroscopy that cannot directly measure homonuclear diatomic molecules. A single-frequency laser can be used for qualitative and quantitative analysis of multi-component mixed gases. However, due to the inherently weak Raman effect of matter, and the Raman effect of the gas is generally much lower than that of solid and liquid, this greatly limits the wider application of Raman spectroscopy in gas sensing. Improving the scattering intensity of gas is key to making gas Raman sensing technology more widely used. Currently, the most important gas Raman sensing enhancement technology includes cavity enhancement technology and optical fiber enhancement technology. Cavity enhancement technology enhances the Raman scattering signal from the source by increasing the intensity and path of the excitation light that interacts with the gas to be measured, including multiple pass cavity enhancement, F-P cavity enhancement, and laser cavity enhancement. Fiber enhancement, including silver-plated capillary tube enhancement and hollow fiber enhancement, enhances the Raman scattering signal by improving the collection efficiency of spherical scattered light so that most of the Raman scattered light can enter the spectral detector. This paper briefly introduces the enhancement principles of the above two technologies, summarizes the research progress and application status, and discusses their advantages and limitations. Finally, focusing on detecting multi-component trace gases, it looks forward to the future development trend of gas Raman sensing technology. Although the current spectrum analysis method based on the absorption effect dominates the field of gas detection, especially photoacoustic spectroscopy, shortly, gas Raman sensing technology is expected to be more extensive and in-depth in the field of gas detection.
Key words:Raman spectroscopy; Gas sensing; Cavity enhancement; Optical fiber enhancement
万 福,葛 虎,刘 强,孔维平,王建新,陈伟根. 气体拉曼传感增强技术研究进展与趋势[J]. 光谱学与光谱分析, 2022, 42(11): 3345-3354.
WAN Fu, GE Hu, LIU Qiang, KONG Wei-ping, WANG Jian-xin, CHEN Wei-gen. Research Progress and Trend of Gas Raman Sensing Enhancement Technology. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3345-3354.
[1] CHEN Wei-gen, WAN Fu, et al(陈伟根, 万 福,等). Proceedings of the CSEE(中国电机工程学报), 2015, 35(18): 4833.
[2] JI Yan-song, WANG Cheng-yu, et al(季严松, 王承玉,等). High Voltage Apparatus(高压电器), 2011, 47(2): 100.
[3] WANG Ming-min, SUN Lei, et al(王铭民, 孙 磊,等). High Voltage Technology(高电压技术), 2021, 47(1): 279.
[4] Hippler M. Anal. Chem., 2015, 87(15): 7803.
[5] Yang D, Guo J, Liu Q, et al. Applied Optics, 2016, 55(27): 7744.
[6] Sandfort V, Goldschmidt J, Wöllenstein J, et al. Sensors, 2018, 18(3): 709.
[7] S Matthews D E,Hayes J M. Anal. Chem., 1978, 50(11): 1465.
[8] Cesar W, Flourens F, Kaiser C. Anal. Chem., 2015, 87(11): 5620.
[9] Tierney M J,Kim H O L. Anal. Chem., 1993, 65(23): 3435.
[10] Ionescu R, Llobet E, Vilanova X, et al. Analyst,2002, 127(9): 1237.
[11] Schiff H I, Hastie D R, Mackay G I, et al. Environ. Sci. Technol. , 1983, 17(8): A352.
[12] Havey D K, Bueno P A, Gillis K A. Anal. Chem., 2010, 82(19): 7935.
[13] Lang Ziting, Qiao Shunda, He Ying, et al. Photoacoustics,2021, 22:100272.
[14] Ma Yufei, Hu Yinqiu, Qiao Shunda, et al. Photoacoustics,2020, 20, 100206.
[15] Colthup N B, Daly L H, Wiberley S E. Introduction to Infrared and Raman Spectroscopy. San Diego: Academic Press, 1990.
[16] Smith E, Dent G. Modern Raman Spectroscopy: A Practical Approach. New York: John Wiley & Sons Inc, 2005.
[17] Raman C V,Krishnan K S. Nature, 1928, 121(3048): 501.
[18] Long D A. The Raman Effect. New York: John Wiley & Sons Inc, 2002.
[19] Trutna W R, Byer R L. Appl. Optics, 1980, 19(2): 301.
[20] Utsav K C, Silver J A, Hovde D C, et al. Appl. Optics, 2011, 50(24): 4805.
[21] Hartley D L, Hill R A. Journal of Applied Physics, 1972, 43(10): 4134.
[22] Hill R A, Hartley D L. Applied Optics, 1974, 13(1): 186.
[23] Hill R A, Mulac A J, Hackett C E. Applied Optics, 1977, 16(7): 2004.
[24] Li X Y, Xia Y X, Huang J M, et al. Applied Physics B Lasers & Optics, 2008, 93(2): 665.
[25] Li X, Xia Y, Zhan L, et al. Optics Letters, 2008, 33(18): 2143.
[26] Velez Juan S Gomez, Muller Andreas. Measurement Science and Technology, 2021, 32(4): 045501.
[27] Pound R V. Proc. IRE, 1946, 35(12): 1405.
[28] Drever R W P, Ford G M, Hough J, et al. Gen. Relat. Gravit., 1980, 265.
[29] Drever R W P, Hall J L, Kowalski F V. Appl. Phys. B, 1983, 31(2): 97.
[30] Li H, Abraham N B. IEEE J. Quantum Elect., 1989, 25(8): 1782.
[31] Ohshima S I, Schnatz H. J. Appl. Phys., 1992, 71(7): 3114.
[32] Dahmani B, Hollberg L, Drullinger R. Optics Letters, 1987, 12(11): 876.
[33] Lang R, Kobayashi K. IEEE Journal of Quantum Electronics, 1980, 16(3): 347.
[34] Black E D. American Journal of Physics, 2001, 69(1): 79.
[35] Taylor D J, Glugla M,Penzhorn R D. Rev. Sci. Instrum., 2001, 72(4): 1970.
[36] Friss A J, Limbach C M,Yalin A P. Opt. Lett.,2016, 41(14): 3193.
[37] Lang R. IEEE Journal of Quantum Electronics, 1982, 18(6): 976.
[38] Morville J, Kassi S, Chenevier M. Appl. Phys. B, 2005, 80(8): 1027.
[39] Hippler M, Mohr C, Keen K A,et al. J. Chem. Phys., 2010, 133(4): 044308.
[40] Salter R, Chu J,Hippler M. Analyst, 2012, 137(20): 4669.
[41] Wang P, Chen W, Wan F, et al. Opt. Express, 2019, 27(23): 33312.
[42] Wang P, Chen W, Wang J, et al. Anal. Chem., 2020, 92(8): 5969.
[43] Atmosphere Recovery, INC. Retrieved from http://www.atmrcv.com/.
[44] Pearman W F, Carter J C, Angel S M, et al. Applied Spectroscopy, 2008, 62(3): 285.
[45] GUO Jin-jia, YANG De-wang, LIU Chun-hao(郭金家, 杨德旺, 刘春昊). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2016, 36(1): 96.
[46] James T, Rupp S, Telle H, et al. Analytical Methods, 2015, 7(6): 2568.
[47] Buric M P, Chen K, Falk J, et al. Proc. SPIE, 2009, 7316: 731608.
[48] Buric M P, Chen K, Falk J, et al. Applied Optics, 2009, 48(22): 4424.
[49] Yang X, Chang A, Chen B, et al. Sensors Actuators B: Chemical, 2013, 176: 64.
[50] Jochum T, Rahal L, Suckert R J, et al. Analyst, 2016, 141(6): 2023.
[51] Chow K K, Short M, Lam S,et al. Medical Physics, 2014, 41(9): 092701.
[52] Sandfort V, Trabold B, Abdolvand A, et al. Sensors, 2017, 17(12): 2714.
[53] Yan D, Popp J, Pletz M W, et al. Analytical Methods, 2018, 10(6): 586.
[54] Yan D, Popp J, Pletz M W, et al. ACS Photonics, 2017, 4(1): 138.
[55] Knebl A, Yan D, Popp J, et al. TrAC Trends in Analytical Chemistry, 2018, 103: 230.
[56] Hanf S, Keiner R, Yan D, et al. Analytical Chemistry, 2014, 86(11): 5278.
[57] Kanf S, Bogozi T, Keiner R, et al. Analytical Chemistry, 2015, 87(2): 982.
[58] Sieburg A, Schneider S, Yan D, et al. Analyst, 2018, 143(6): 1358.
[59] Knebl A, Domes R, Yan D, et al. Analytical Chemistry, 2019, 91(12): 7562.
[60] Yerolatsitis S, Yu F, McAughtrie S, et al. Journal of Biophotonics, 2019, 12(3): e201800239.
[61] Knebl A, Domes C, Domes R, et al. Analytical Chemistry, 2021, 93(30): 10546.
[62] Wang Jianxin, Chen Weigen, Wang Pinyi, et al. Opt. Express, 2021, 29(20): 32296.
[63] Tan Y, Jin W, Yang F, et al. Journal of Lightwave Technology, 2017, 35(14): 2887.