光谱学与光谱分析
|
光导纤维反射光谱法在文物、艺术品分析和保护中的进展
赵 星,王丽琴*
西北大学文化遗产学院文化遗产研究与保护技术教育部重点实验室,陕西 西安 710069
Progress in the Analysis and Conservation of Cultural Relics and Artworks with Fiber Optic Reflectance Spectroscopy
ZHAO Xing, WANG Li-qin*
College of Cultural Heritage, Key Laboratory of Cultural Heritage Research and Conservation (Northwest University), Ministry of Education, Xi’an 710069, China
摘要 : 文物是不可再生的宝贵遗产,艺术品是不可多得的文化财富,对文物和艺术品进行分析时应尽可能避免对其造成损伤。光导纤维反射光谱法作为一种无损、快速的分析检测方法,具有无损检测、直接测量和远程分析的特点,在文物和艺术品研究中具有独特的优势。介绍了光导纤维反射光谱法在颜料及染料鉴定、胶结材料分析以及研究保护效果和保存条件方面的应用,探讨了光导纤维反射光谱方法的检出限、重现性和信号表征方法,并展望了光导纤维反射光谱法在文物和艺术品研究中的发展趋势。
关键词 :光导纤维反射光谱法;文物;艺术品;分析;保护
Abstract :Cultural relics are non-renewable precious heritages, while artworks are limited cultural fortune. Therefore, it cannot afford any damage when cultural relics and artworks are analyzed. Fiber optic reflectance spectroscopy (FORS) has features of non-destructive testing, direct measurement and remote analysis and has its unique advantages in the research of cultural relics and artworks. This paper introduced the application of FORS in the identification pigments and dyes, the analysis of binders and the research of conservation results and preservation environments. Detection limits, reproducibility and signal characterization method were discussed. The future development of FORS in the research of cultural relics and artworks was summarized.
Key words :Fiber optic reflectance spectroscopy (FORS);Cultural relics;Artworks;Analysis;Conservation
收稿日期: 2015-07-31
修订日期: 2015-11-25
通讯作者:
王丽琴
E-mail: wangliqin@nwu.edu.cn
[1] Sepúlveda M,Gutierrez S,Carcamo J,et al. Journal of the Chilean Chemical Society,2015,60:2822. [2] Tomasini E P,Dubois C M F,Little N C,et al. Microchemical Journal,2015,121:157. [3] Beck L,Rousselière H,Castaing J,et al. Talanta,2014,129:459. [4] Edwards H G M,Vandenabeele P,Benoy T J. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2015,137:45. [5] Klisińska-Kopacz A. Journal of Raman Spectroscopy,2015,46:317. [6] Degani L,Riedo C,Chiantore O. Analytical and Bioanalytical Chemistry,2015,407:1695. [7] Schossler P,Fortes I. Analytical Letters,2013,46(12):1869. [8] Han K,Lee S,Lee H. Microscopy and Microanalysis,2013,19(S5):157. [9] Bullock L. National Gallery Technical Bulletin,1978,2:49. [10] Appolonia L,Vaudan D,Chatel V,et al. Analytical and Bioanalytical Chemistry,2009,395(7):2005. [11] Colombo C,Bevilacqua F,Brambilla L,et al. Analytical and Bioanalytical Chemistry,2011,401(2):757. [12] Bacci M,Corallini A,Orlando A,et al. Journal of Cultural Heritage,2007,8(3):235. [13] ZHANG Wen-yuan,CUI Qiang,LI Qing-hui,et al(张文元,崔 强,李青会,等). Dunhuang Research(敦煌研究),2013,(1):73. [14] Carlesi S,Bartolozzi G,Cucci C,et al. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2013,104:527. [15] Dupuis G,Elias M,Simonot L. Applied Spectroscopy,2002,56(10):1329. [16] Olszewska-Swietlik J, Szmelter-Fausek B, Pieta E, et al. Journal of Spectroscopy,2013, 2013: 187407, doi:10.1155/2013/187407. [17] La Russa M F,Ruffolo S A,Belfiore C M,et al. Applied Physics A: Materials Science & Processing,2014,114(3):733. [18] LUO Yi-feng(罗益锋). Hi-Tech Fiber & Application(高科技纤维与应用),2010,35(3):26. [19] Costa B J A,Figueiras J A. Engineering Structures,2012,44:271. [20] Bracci S,Caruso O,Galeotti M,et al. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2015,145:511. [21] Wang Liqin,Dang Gaochao,Zheng Liping,et al. Analytical Letters,2001,34(13):2403. [22] Delaney J K,Ricciardi P,Glinsman L D,et al. Studies in Conservation,2014,59(2):91. [23] Bracci S,Cuzman O A,Ignesti A,et al. European Journal of Science and Theology,2013,9(2):91. [24] Ricciardi P,Pallipurath A,Rose K. Analytical Methods,2013,5:3819. [25] WANG Li-qin,DANG Gao-chao,ZHAO Jing(王丽琴,党高潮,赵 静). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2008,28(8):1722. [26] Aceto M,Agostino A,Fenoglio G,et al. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2012,91(6):352. [27] Cheilakou E,Troullinos M,Koui M. Journal of Archaeological Science,2014,41(2):541. [28] Arletti R,Conte S,Vandini M,et al. Journal of Archaeological Science,2011,38(1):79. [29] Bacci M,Casini A,Cucci C,et al. Journal of Cultural Heritage,2003,4(4):329. [30] Bacci M,Magrini D,Picollo M,et al. Journal of Cultural Heritage,2009,10(2):275. [31] Atrei A,Benrtti F,Bracci S,et al. Journal of Cultural Heritage,2014,15(1):80. [32] Sessa C,Bagán H,García J F. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2013,115:617. [33] Montagner C,Bacci M,Bracci S,et al. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2011,79:1669. [34] Aceto M,Idone A,Agostino A,et al. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2014,117:34. [35] Aceto M,Arrais A,Marsano F,et al. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2015,142:159. [36] Pallipurath A,Skelton J,Ricciardi P,et al. Journal of Raman Spectroscopy,2013,44(6):866. [37] Ploeger R,Scalarone D,Chiantore O. Journal of Cultural Heritage,2010,11(1):35. [38] WU Jing-qing,LUO Xi-yun,GENG Jin-pei,et al(武敬青,罗曦芸,耿金培,等). Computers and Applied Chemistry(计算机与应用化学),2012,29(2):211. [39] Cucci C,Bigazzi L,Picollo M. Journal of Cultural Heritage,2013,14(4):290. [40] Raimondi V,Andreotti A,Colombini M P,et al. Applied Surface Science,2015,337:45. [41] Kahrim K,Daveri A,Rocchi P,et al. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,74:1182. [42] Rosenzweig B,Carretti E,Picollo M,et al. Applied Physics A Materials Science and Processing,2006,83(4):669. [43] Aceto M,Agostino A,Fenoglio G,et al. Analytical Methods,2014,6(5):1488.
[1]
范萍萍,李雪莹,邱慧敏,侯广利,刘 岩. 黄渤海沉积物有机碳光谱分析在不同仪器间的差异 [J]. 光谱学与光谱分析, 2024, 44(01): 52-55.
[2]
杨超普,方文卿,吴庆丰,李 春,李晓龙. 基于光谱分析的AMOLED蓝光危害与节律效应随年龄变化研究 [J]. 光谱学与光谱分析, 2024, 44(01): 36-43.
[3]
雷宏军, 杨 光, 潘红卫, 王逸飞, 易 军, 王珂珂, 王国豪, 童文彬, 史利利. 水化学离子对溶解有机物三维荧光光谱影响及分类预处理方法 [J]. 光谱学与光谱分析, 2024, 44(01): 134-140.
[4]
梁业恒,邓孺孺,梁钰婕,刘永明,吴 仪,袁宇恒,艾先俊. 重金属污染水体背景下的底质反射率光谱特征及其对离水反射率贡献影响分析 [J]. 光谱学与光谱分析, 2024, 44(01): 111-117.
[5]
夏明明, 刘 佳, 吴 萌, 樊剑波, 刘晓利, 陈 玲, 马昕伶, 李忠佩, 刘 明. 含钙添加剂处理下不同秸秆腐解产物可溶性有机质三维荧光特征变化 [J]. 光谱学与光谱分析, 2024, 44(01): 118-124.
[6]
鲍 浩,张 艳. 基于改进哈里斯鹰优化算法的光谱特征波段选择模型研究 [J]. 光谱学与光谱分析, 2024, 44(01): 148-157.
[7]
郭亚菲,曹 强,叶蕾蕾,张成园,寇仁博,王君梅,郭 玫. 唐古特大黄FTIR的双指标序列分析及抗炎谱效关系研究 [J]. 光谱学与光谱分析, 2024, 44(01): 188-196.
[8]
王彩玲,张 静,王洪伟,宋晓楠,纪 童. 一种波段聚类和多尺度结构特征融合的高光谱图像分类模型 [J]. 光谱学与光谱分析, 2024, 44(01): 258-265.
[9]
梁守真, 隋学艳,王 猛,王 菲,韩冬锐,王国良,李洪忠,马万栋. 花青素对植物反射特性的影响及遥感估算:叶片尺度 [J]. 光谱学与光谱分析, 2024, 44(01): 275-282.
[10]
杨克利,彭姣玉,董亚萍,刘 鑫,李 武,刘海宁. 溶解性有机质在盐田中的光谱学变化特征 [J]. 光谱学与光谱分析, 2023, 43(12): 3775-3780.
[11]
胡彩平,何成遇,孔丽微,朱优优,武 斌,周浩祥,孙 俊. 模糊线性判别QR分析的茶叶近红外光谱鉴别分析 [J]. 光谱学与光谱分析, 2023, 43(12): 3802-3805.
[12]
刘浩东,姜喜全,牛 昊,刘钰博,李 惠,刘 媛,Wei Zhang,李鲁艳,陈 婷,赵燕杰,倪家升. 基于激光拉曼光谱归一化法的乙醇定量分析研究 [J]. 光谱学与光谱分析, 2023, 43(12): 3820-3825.
[13]
赵文华,韩向娜,叶 琳,白九江. 文物中常见可溶盐精确鉴别方法 [J]. 光谱学与光谱分析, 2023, 43(12): 3826-3831.
[14]
路文静,方亚平,林太凤,王惠琴,郑大威,张 萍. 乳腺癌细胞及其外泌体的拉曼表型快速鉴定与关系研究 [J]. 光谱学与光谱分析, 2023, 43(12): 3840-3846.
[15]
李奇辰,李民赞,杨 玮,孙 红,张 瑶. 基于拉曼光谱的水溶性磷定量分析 [J]. 光谱学与光谱分析, 2023, 43(12): 3871-3876.