Abstract:In this research, near infrared (NIR) spectroscopy was used to detect procymidone in edible vegetable oils qualitatively. Edible vegetable oil samples with different procymidone contents were classified to two groups according to boundary line of maximum residue limit of procymidone in national standard. QualitySpec spectrometer was used to acquire spectra of two group samples, then uninformative variable elimination (UVE) and subwindow permutation analysis (SPA) were used to select informative wavelength variables. At last, several methods such as linear discriminant analysis (LDA), partial least squares-linear discriminant analysis (PLS-LDA) and discriminant partial least squares (DPLS) were used to develop classification models. The results indicate that NIR spectroscopy is feasible to classify the two group samples. UVE method can select informative wavelength variables effectively, and improve the performance of classification model. The best model is developed by UVE-DPLS method, the classification correct rate, sensitivity and specificity of prediction samples in this model are 98.7%, 95.0% and 100.0%, respectively.
孙 通,莫欣欣,李晓珍,吴宜青,刘木华* . 近红外光谱技术结合变量选择方法定性检测食用植物油中的腐霉利 [J]. 光谱学与光谱分析, 2016, 36(12): 3915-3919.
SUN Tong, MO Xin-xin, LI Xiao-zhen, WU Yi-qing, LIU Mu-hua* . Qualitative Detection of Procymidone in Edible Vegetable Oils by Near Infrared Spectroscopy and Variable Selection Methods. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(12): 3915-3919.
[1] Cai J X, Wang Y F, Xi X G, et al. International Journal of Biological Macromolecules, 2015, 78: 439. [2] Chen H, Tan C, Wu T, et al. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2014, 130(17): 245. [3] Zhang L, Zhang X, Ni L, et al. Food Chemistry, 2014, 145(4): 342. [4] Sun T, Lin H, Xu H, et al. Postharvest Biology and Technology, 2009, 51(1): 86. [5] Li J H, Danao M G C, Chen S F, et al. Journal of Near Infrared Spectroscopy, 2015, 23(2): 85. [6] Huang L, Zhao J W, Zhang Y H, et al. Analytical Methods, 2012, 4(11): 3816. [7] XIONG Yan-mei, TANG Guo, DUAN Jia, et al(熊艳梅, 唐 果, 段 佳, 等). Chinese Journal of Analytical Chemistry(分析化学), 2012, 40(9): 1434. [8] Zhang Y, Xiang B, Dong Y, et al. Analytical Letters, 2013, 46(17): 2739. [9] Salguero-Chaparro L, Gaitán-Jurado A J, Ortiz-Somovilla V, et al. Food Control, 2013, 30(2): 504. [10] Jamshidia B, Mohajerani E, Jamshidi J, et al. Food Additives & Contaminants: Part A, 2015, 32(6): 857. [11] CHEN Jing-jing, LI Yong-yu, WANG Wei, et al(陈菁菁, 李永玉, 王 伟, 等). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2010, 41(10): 134. [12] Nerea A, Silvia A, Carmen J. Pest Management Science, 2013, 69(4): 471. [13] Sánchez M T, Flores-Rojas K, Guerrero J E, et al. Pest Management Science, 2010, 66(6): 580. [14] DAI Fen, ZHANG Kun, HONG Tian-sheng, et al(代 芬, 张 昆, 洪添胜, 等). Journal of Agricultural Mechanization Research(农机化研究), 2010, 10: 111. [15] Zhou Y, Xiang B, Wang Z, et al. Analytical Letters, 2009, 42(10): 1518. [16] SUO Shao-zeng, LIU Cui-ling, WU Jing-zhu, et al(索少增, 刘翠玲, 吴静珠, 等). Transducer and Microsystem Technologies(传感器与微系统), 2012, 31(10): 136. [17] YUAN Wen-bo, XIANG Bing-ren, ZHAO Lu-hua, et al(袁文博, 相秉仁, 赵陆华, 等). Journal of China Pharmaceutical University(中国药科大学学报), 2012, 43(2): 164. [18] Centner V, Massart D L, Denoord O E, et al. Analytical Chemistry, 1996, 68(21): 3851. [19] Li H D, Zeng M M, Tan B B, et al. Metabolomics, 2010, 6(3): 353. [20] Li H D, Liang Y Z, Xu Q S, et al. Journal of Chemometrics, 2010, 24(7-8): 418.