Mid-Infrared Distributed-Feedback Quantum Cascade Laser-Based Photoacoustic Detection of Trace Methane Gas
TAN Song1,2, LIU Wan-feng1, WANG Li-jun1*, ZHANG Jin-chuan1, LI Lu1, LIU Jun-qi1, LIU Feng-qi1, WANG Zhan-guo1
1. Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China 2. Department of Physics, Tsinghua University, Beijing 100084, China
Abstract:There have been considerable interests in methane detection based on infrared absorption spectroscopy for industrial and environment monitoring. The authors report on the realization of photoacoustic detection of methane (CH4) using mid-infrared distributed-feedback quantum cascade laser (DFB-QCL). The absorption line at 1 316.83 cm-1 was selected for CH4 detection, which can be reached by the self-manufactured DFB-QCL source operating in pulsed mode near 7.6 μm at room-temperature. The CH4 gas is filled to a Helmholtz resonant photoacoustic cell, which was equipped with a commercial electret microphone. The DFB-QCL was operated at 234 Hz with an 80 mW optical peak power. A detection limit of 189 parts per billion in volume was derived when the signal-to-noise ratio equaled 1.
Key words:Methane;Distributed-feedback;Quantum cascade laser;Photoacoustic spectroscopy;Trace gas detection
谭 松1,2,刘万峰1,王利军1*,张锦川1,李 路1,刘俊岐1,刘峰奇1,王占国1. 基于中红外分布反馈量子级联激光器的光声光谱技术用于痕量甲烷气体检测[J]. 光谱学与光谱分析, 2012, 32(05): 1251-1254.
TAN Song1,2, LIU Wan-feng1, WANG Li-jun1*, ZHANG Jin-chuan1, LI Lu1, LIU Jun-qi1, LIU Feng-qi1, WANG Zhan-guo1. Mid-Infrared Distributed-Feedback Quantum Cascade Laser-Based Photoacoustic Detection of Trace Methane Gas. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32(05): 1251-1254.
[1] Franks A R,Opterman J J,Friel F G,et al. US Department of Health and Human Services,Report of Investigations, 1997. 9640. [2] Karakurt I, Aydin G, Aydiner K. Renewable Energy,2012, 39(1): 40. [3] Li Z S, Rupinski M, Zetterberg J, et al. Proceedings of the Combustion Institute,2005, 30 (1): 1629. [4] Barazzouk S, Tandon R P, Hotchandani S. Sensors and Actuators B: Chemical,2006, 119 (2): 691. [5] Bai S L, Chen L Y, Yang P C, et al. Sensors and Actuators B: Chemical,2008, 135 (1): 1. [6] Kck A, Tischner A, Maier T, et al. Sensors and Actuators B: Chemical,2009, 138 (1): 160. [7] CHEN Jun-ying, LIN Hui(陈俊英,林 辉). Modern Instruments(现代仪器),2007, 13(5): 1. [8] DONG Feng-zhong, KAN Rui-feng, LIU Wen-qing, et al(董凤忠,阚瑞峰,刘文清, 等). Chinese Journal of Quantum Electronics(量子电子学报),2005, 22(3): 315. [9] Curl R F, Capasso F, Gmachl C, et al. Chemical Physics Letter,2010, 487: 18. [10] Dong L, Spagnolo V, Lewicki R, et al. Optics Express,2011, 19: 24. [11] Rao G N, Karpf A. Applied Optics,2011, 50(4): 100. [12] Rothman L S, Gordon I E, Barbe A, et al. Journal of Quantitative Spectroscopy and Radiative Transfer,2009, 110 (9-10): 533. [13] Zeninari V, Parvitte B, Courtois D, et al. Infrared Phys. Technol.,2003, 44 (4): 253. [14] Zeninari V, Grossel A, Joly L, et al. Central European Journal of Physics. 2010, 8 (2): 194. [15] Grossel A, Zeninari V, Joly L, et al. Spectrochimica Acta Part A,2006, 63(5): 1021. [16] Liu W, Wang L, Li L, et al. Applied Physics B: Lasers and Optics,2011, 103(3): 743. [17] ZHANG Jin-chuan, WANG Li-jun, LIU Wan-feng, et al(张锦川,王利军,刘万峰,等). Journal of Semiconductors(半导体学报),2012,33(2):024005.