Kernel Regression Application in Estimating Stellar Fundamental Parameters
ZHANG Jian-nan1,WU Fu-chao2,LUO A-li1
1. The National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China 2. Institute of Automation, Chinese Academy of Sciences, Beijing 100080, China
Abstract:The three fundamental parameters of stellar atmosphere, i.e. the effective temperature, the surface gravity, and the metallic, determine the continuum and spectral lines in the stellar spectrum. With the development of the modern telescopes such as SDSS, LAMOST projects, the great voluminous spectra demand to explore automatic celestial spectral analysis methods. It is most significant for Galaxy research to develop automatic methods determining the fundamental parameters from stellar spectra data. Two non-linear regression algorithms, kernel least squared regression (KLSR) and kernel PCA regression (KPCR), are proposed for estimating the three parameters in the present paper. The linear regression models, LSR and PCR, are extended to non-linear regression by using a kernel function for the stellar parameter estimation from spectra. Extensive experiments on low resolution spectra data show: (1) KLSR and KPCR methods realize the regression from spectrum to the effective temperature and gravity. KLSR is sensitive to the noise while KPCR is robust than the former. (2) For the effective temperature estimation, the two algorithms perform similarly; and for the gravity and metallic estimation, the KPCR is superior to the KLSR and the NPR(Non-parameter regression); (3) KLSR and KPCR methods are simple and efficient for the stellar spectral parameter estimation.
Key words:Stellar spectra;Stellar fundamental parameters;Kernel PCA regression (KPCR);Kernel least squares regression (KLSR)
[1] Katz D, Soubiran C, Cayrel R, et al. Astronomy & Astrophysics,1998, 338: 151. [2] Soubiran C, Katz D, Cayrel R. Astronomy and Astrophysics Supplement, Series, 1998, 133: 221. [3] Allende P C. Atronomische Nachrichten, 2004, 325(6): 604. [4] Fuentes O, Gulati R K. The Seventh Texas-Mexico Conference on Astrophysics: Flows, Blows and Glows(Eds. Lee William H, Torres-Peimbert Silvia). Revista Mexicana de Astronomía Astrofísica (Serie de Conferencias), 2001. 209. [5] ZHANG Jian-nan, WU Fu-chao, LUO A-li, et al(张健楠,吴福朝,罗阿理,等). Acta Astronomica Sinica(天文学报),2005, 46(4): 404. [6] Shawn S, Carlos A P, Hippel T V, et al. The Astrophysical Journal, 2001,562: 528. [7] Bailer-Jones C A L. Astronomy & Astrophysics, 2000, 357: 197. [8] Bailer-Jones C A L, Irwin Mike, von Hippel Ted. Monthly Notices of the Royal Astronomical Society, 1998, 298(2): 361. [9] Vapnik Vladimir N. The Nature of Statistical Learning Theory(统计学习理论的本质). Translated by ZHANG Xue-gong(张学工,译). Beijing:Tsinghua University Press(北京:清华大学出版社),2000. 97. [10] Muller K-R, Mika S, Ratsch G, et al. IEEE Transactions on Neural Networks, 2001, 12(2): 181. [11] Twining C J, Taylor C J. Pattern Recognition. 2003, 36: 217. [12] Lejeune T, Cuisinier F, Buser R. Astonomy and Astrophysics Supplement, Series, 1997, 125: 229. [13] Lejeune T, Cuisinier F, Buser R. A Standard Stellar Library (Lejeune+ 1997). http://vizier.u-strasbg.fr/viz-bin/ftp-index?J/A+AS/125/229. [14] Prugniel P,Soubiran C. Astonomy & Astrophysics, 2001, 369: 1048.