光谱学与光谱分析
|
近红外光谱技术定量测定杨梅汁可溶性固形物
谢丽娟,刘东红* ,张宇环,徐惠荣,叶兴乾,应义斌
浙江大学生物系统工程与食品科学学院,浙江 杭州 310029
Quantitative Determination of Soluble Solid Content in Bayberry Juice Using Near-Infrared Spectroscopy Technique
XIE Li-juan,LIU Dong-hong* ,ZHANG Yu-huan,XU Hui-rong,YE Xing-qian,YING Yi-bin
College of Biosystems Engineering and Food Science,Zhejiang University,Hangzhou 310029,China
摘要 : 采用近红外光谱分析技术对浙江省不同产地的杨梅汁进行了光谱测定和定量分析,通过计算样品的杠杆值、学生残差和马氏距离来判别异常样品,采用偏最小二乘法(PLS)对杨梅汁的可溶性固形物进行建模分析,选取不同的分辨率和波段范围对光谱进行有效的信息提取和分析,确定了最佳的回归因子数和用于定量分析的最优波段范围。结果显示: 杨梅汁样品中有一个为异常样品,在建模时予以剔除;用于杨梅汁可溶性固形物检测的最佳分辨率和最优波段分别是4 cm-1 和4 000~12 267.46 cm-1 ,最佳的回归因子数是8,该PLS模型的相关系数为0.957 85,校正均方根误差(RMSEC)、预测均方根误差(RMSEP)和交互验证标准偏差(RMSECV)分别是0.431,0.925和1.07°Brix。研究表明近红外光谱检测技术能用于杨梅汁可溶性固形物的定量分析。
关键词 :近红外透射光谱;杨梅汁;可溶性固形物;偏最小二乘法
Abstract :Near-infrared transmittance spectra of bayberry juice of different varieties in Zhejiang province were obtained and a quantitative analysis was carried out. Leverage value,studentized residue and sample’s Mahalanobis distance were applied to detect the outlier sample,and different wave number ranges and resolutions were chosen for partial least squares (PLS) regression to abstract spectral information effectively. The best factor,resolution and optimum wave number range were determined. Analysis results show that one sample was an outlier and deleted,and the best model gave the relative high correlation coefficient of 0.957 85,RMSEC,RMSEP and RMSECV of 0.431,0.925 and 1.07° Brix,respectively,when the best wave number range was 4 000-12 267.46 cm-1 ,and the best factor and resolution were 8 and 4 cm-1 ,respectively. The results indicate that it is feasible to use NIR spectroscopy technique for quantitative analysis of bayberry juice soluble solid content.
Key words :Near-infrared transmittance spectra;Bayberry juice;Soluble solid content;Partial least squares (PLS)
收稿日期: 2007-02-06
修订日期: 2007-04-08
通讯作者:
刘东红
E-mail: dhliu@zju.edu.cn
引用本文:
谢丽娟,刘东红* ,张宇环,徐惠荣,叶兴乾,应义斌 . 近红外光谱技术定量测定杨梅汁可溶性固形物[J]. 光谱学与光谱分析, 2007, 27(07): 1332-1335.
XIE Li-juan,LIU Dong-hong* ,ZHANG Yu-huan,XU Hui-rong,YE Xing-qian,YING Yi-bin . Quantitative Determination of Soluble Solid Content in Bayberry Juice Using Near-Infrared Spectroscopy Technique. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2007, 27(07): 1332-1335.
链接本文:
https://www.gpxygpfx.com/CN/Y2007/V27/I07/1332
[1] Chen J,Arnold M A,Small G W. Analytical Chemistry,2004,76(18):5405. [2] Gestal M,Gómez-Carracedo M P,Andrade J M,et al. Analytica Chimica Acta,2004,524: 225. [3] WANG Duo-jia,ZHOU Xiang-yang,JIN Tong-ming,et al(王多加,周向阳,金同铭,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2004,24(4): 447. [4] HOU Rui-feng,HUANG Lan,WANG Zhong-yi,et al(侯瑞锋,黄 岚,王忠义,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2006,26(12): 2193. [5] FU Xia-ping,YING Yi-bin,LIU Yan-de,et al(傅霞萍,应义斌,刘燕德,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2006,26(6): 1038. [6] LU Hui-shan,YING Yi-bin,FU Xia-ping,et al(陆辉山,应义斌,傅霞萍,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2007,27(3): 494. [7] LI Jun-xia,MIN Shun-geng,ZHANG Hong-liang,et al(李君霞,闵顺耕,张洪亮,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2006,26(5): 833. [8] RUI Yu-kui,LUO Yun-bo,HUANG Kun-lun,et al(芮玉奎,罗云波,黄昆仑,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2005,25(10): 1581. [9] Roussem S A,Hardy C L,Hurburgh C R,et al. Applied Spectroscopy,2001,55: 1425. [10] ZHU Zhi-hua,WANG Wen-zhen,LIU San-cai,et al(朱志华,王文真,刘三才,等). Modern Scientific Instruments(现代科学仪器),2006,(1): 63. [11] LIU Xian,HAN Lu-jia(刘 贤,韩鲁佳). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2004,26(11): 2016. [12] LI Hui,QIN Yu-chang,Lü Xiao-wen,et al(李 辉,秦玉昌,吕小文,等). Transactions of Chinese Society of Agricultural Engineering(农业工程学报),2004,22(11): 264. [13] WANG Li,ZHUO Lin,HE Ying,et al(王 丽,卓 林,何 鹰,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2004,24(12): 1537. [14] LIU Li-li,YUAN Yuan,CHEN Wan-sheng,et al(刘荔荔,原 源,陈万生,等). Chinese Traditional and Herbal Drugs(中草药),2001,32(11): 1024. [15] FENG Hong-nian,GAN Bin,JIN Shang-zhong(冯红年,甘 彬,金尚忠). Laser & Infrared(激光与红外),2005,35(10): 768. [16] ZHAO Jun,DING Hai-shu,RUAN Man-qi,et al(赵 军,丁海曙,阮曼奇,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2005,25(6): 861. [17] WU Bei-lei,LIN Zhen-xing,WANG Qun-wei,et al(邬蓓蕾,林振兴,王群威,等). Rock and Mineral Analysis(岩矿测试),2006,25(2): 133. [18] XU Guang-tong,YUAN Hong-fu,LU Wan-zhen(徐广通,袁洪福,陆婉珍). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2000,20(2): 134. [19] LIU Yan-de,YING Yi-bin(刘燕德,应义斌). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2006,26(8): 1454. [20] YAN Yan-lu,ZHAO Long-lian,HAN Dong-hai,et al(严衍禄,赵龙莲,韩东海,等). Foundation of Near Infrared Spectral Analysis and Its Application(近红外光谱分析基础与应用). Beijing: China Light Industry Press(北京: 中国轻工业出版社),2005.
[1]
李 宇,张克灿,彭丽娟,朱正良,何 亮. 偏最小二乘辅助紫外可见光谱法同时测定烟草中的葡萄糖与木糖含量 [J]. 光谱学与光谱分析, 2024, 44(01): 103-110.
[2]
黄 华,刘 亚,库尔班古丽·都力昆,曾繁琳,玛依热·麦麦提,阿瓦古丽·麦麦提,买地努尔汗·艾则孜,郭俊先. 融合分数阶微分与PIMP-RF算法的集成学习模型预测成熟期苹果可溶性固形物含量 [J]. 光谱学与光谱分析, 2023, 43(10): 3059-3066.
[3]
贾 豪,张维方,雷敬卫,李莹莹,杨春静,谢彩侠,龚海燕,丁心雨,姚天意. 经典名方一贯煎红外指纹图谱研究 [J]. 光谱学与光谱分析, 2023, 43(10): 3202-3210.
[4]
蔡健荣,黄楚钧,马立鑫,翟利祥,郭志明. 一维卷积神经网络的手持式可见/近红外柑橘可溶性固形物含量无损检测系统 [J]. 光谱学与光谱分析, 2023, 43(09): 2792-2798.
[5]
李 雄,刘燕德,王观田,姜小刚. 柚子光能量衰减规律及透射深度对模型精度的影响分析 [J]. 光谱学与光谱分析, 2023, 43(08): 2574-2580.
[6]
罗东杰,王 勐,张小栓,肖新清. 基于Vis/NIR光谱传感的鲜食葡萄糖度检测系统 [J]. 光谱学与光谱分析, 2023, 43(07): 2146-2152.
[7]
王 斌,郑少锋,甘久林,刘 曙,李伟才,杨中民,宋武元. 塑料标准样品结合偏最小二乘法在激光诱导击穿光谱法元素定量分析领域的研究 [J]. 光谱学与光谱分析, 2023, 43(07): 2124-2131.
[8]
程枭翔,吴 娜,刘 薇,王克青,李辰元,陈坤龙,李延祥. 基于拉曼光谱成像技术的铁质文物锈蚀产物定量模型研究 [J]. 光谱学与光谱分析, 2023, 43(07): 2166-2173.
[9]
张美志,张 宁,乔 聪,许黄蓉,高 博,孟庆扬,鱼卫星. 基于IPLS-XGBoost算法的可见-近红外光谱鸡蛋新鲜度高效准确检测技术研究 [J]. 光谱学与光谱分析, 2023, 43(06): 1711-1718.
[10]
严忠伟,田 喜,张艺飞,李廉洁,刘三庆,黄文倩. 基于全透射近红外光谱的西瓜不同部位可溶性固形物含量在线检测研究 [J]. 光谱学与光谱分析, 2023, 43(06): 1800-1808.
[11]
王 冬,冯海智,李 龙,韩 平. 两种近红外光谱仪的番茄可溶性固形物含量定量模型比较研究 [J]. 光谱学与光谱分析, 2023, 43(05): 1351-1357.
[12]
徐惟馨,夏静静,韦 芸,陈玥瑶,毛欣然,闵顺耕,熊艳梅. 红外光谱对牛预混料中违禁添加盐酸土霉素的快速定量 [J]. 光谱学与光谱分析, 2023, 43(03): 842-847.
[13]
李子仪,李瑞兰,李灿琳,王柯入,范久余,古 锐. 傅里叶红外光谱结合化学计量学的渣驯优劣鉴别研究 [J]. 光谱学与光谱分析, 2023, 43(02): 526-532.
[14]
韩岷杰,王相友,许英超,崔英俊,吕丹阳. 马铃薯近红外光谱无损检测影响因素研究 [J]. 光谱学与光谱分析, 2023, 43(01): 37-42.
[15]
王 超,刘 言,夏珍珍,王 桥,段 烁. 基于近红外光谱技术的小龙虾新鲜度快速检测研究 [J]. 光谱学与光谱分析, 2023, 43(01): 156-161.