Effects of Freeze-Thaw Cycles and Wet-Dry Alternation on Spectral
Characteristics of Straw-Derived Dissolved Organic Matter
CUI Song1, 2, LIU Lu1, 2, ZHANG Fu-xiang1, 2
1. International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
2. Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin 150030, China
Abstract:As a major agricultural by-product, straw is a significant source of dissolved organic matter (DOM) in farmland soils. Aging processes modify the quantity, composition, and structural attributes of straw-derived DOM, thereby influencing its environmental functions and ecological behavior. This study systematically explored the evolution of maize straw-derived DOM under two typical processes freeze-thaw (FT) cycles and wet-dry (WD) alternation-using ultraviolet-visible (UV-vis) spectroscopy, three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy, and parallel factor analysis (PARAFAC). The results demonstrated that (1) both aging treatments significantly enhanced dissolved organic carbon (DOC) release (FT: 6.08 → 9.14 g·kg-1; WD: 6.42→12.39 g·kg-1), with cumulative DOC release under WD treatment being 95.1% higher than under FT, indicating that higher temperature and changes in moisture conditions accelerate organic matter mobilization; (2) UV-Vis spectral analysis revealed the presence of double bond-containing compounds (C═C, C═O, N═N) in straw-derived DOM. During FT cycles, the shoulder peak at 250~300 nm gradually increased and broadened, indicating enhanced humification. In contrast, under wet-dry alternation, the shoulder peak appeared narrower with stronger absorbance, suggesting a reduced degree of humification and a higher abundance of aromatic compounds and unsaturated conjugated double-bond structures; (3) PARAFAC modeling identified three humic-like components (C1, C2, and C3), with the relative abundance of the aromatic component C2 decreasing progressively with aging cycles; (4) Spectral parameter analysis revealed that SUVA254 and SUVA260 values declined, while E2/E3 ratios and fluorescence indices (FI) increased (FT: 1.435→1.446; WD: 1.436→1.456), indicating progressive molecular simplification of straw-derived DOM during the aging process; Correlation analysis further revealed that the degradation of aromatic structures was accompanied by a decrease in molecular weight and an increased similarity between chromophore and fluorophore properties. This study elucidates the dynamic evolution of straw-derived DOM content, composition, and spectral properties during aging, offering scientific insights into the sustainable utilization of straw resources.
[1] Wang X, Li Y M, Mao N, et al. Water Air and Soil Pollution, 2017, 228: 193.
[2] LIU Jun-jie, YAN Xiao-bin, ZHANG Mei-yi, et al(刘俊杰, 严晓斌, 张美怡, 等). Journal of Agricultural Resources and Environment(农业资源与环境学报), 2025, 42(3): 751.
[3] ZHANG Hai-jing,WANG Shao-jie,TIAN Chun-jie,et al(张海晶,王少杰,田春杰,等). Journal of Soil and Water Conservation(水土保持学报), 2021, 35(2): 243.
[4] Yin H J, Zhao W Q, Li T, et al. Renewable & Sustainable Energy Reviews, 2018, 81: 2695.
[5] Linam F, Limmer M A, Ebling A M, et al. Journal of Environmental Management, 2023, 339: 117936.
[6] GAO Tai-zhong, ZHANG Hao, ZHOU Jian-wei(高太忠, 张 昊, 周建伟). Ecology and Environmental Sciences(生态环境学报), 2011, 20(4): 652.
[7] de Oliveira L M, Das S, da Silva E B, et al. Science of the Total Environment, 2018, 633: 649.
[8] Wang K, Pang Y, He C, et al. Science of the Total Environment, 2019, 657: 1274.
[9] Ravichandran M. Chemosphere, 2004, 55(3): 319.
[10] Tian S, Sun X, Xiao H, et al. Chemosphere, 2023, 313: 137451.
[11] WEI Meng-xue, WANG Bin, CHEN Shu, et al(韦梦雪, 王 彬, 谌 书, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2017, 37(9): 2861.
[12] LIU Jia-qi, GUO Jun, WU Ai-lian, et al(刘佳琪, 郭 珺, 武爱莲, 等). Journal of Shanxi Agricultural Sciences(山西农业科学), 2019, 47(3): 387.
[13] Hu S H, Lu C, Zhang C J, et al. Journal of Soils and Sediments, 2016, 16(2): 327.
[14] Huang M, Zhou M, Li Z W, et al. Water Research, 2022, 220: 118671.
[15] Wu X, Liu P, Wang H, et al. Water Research, 2021, 202: 117396.
[16] Yang X D, Wang L W, Guo J M, et al. Science of the Total Environment, 2022, 815: 152922.
[17] He Y, Yang X, Li Z, et al. Chemosphere, 2023, 339: 139711.
[18] ZHANG Shao-liang, ZHUANG Ya-ru, YAN Peng-ke, et al(张少良, 庄亚茹, 闫鹏科, 等). Journal of Northeast Agricultural University(东北农业大学学报), 2024, 55(8): 91.
[19] ZHAO Zi-yuan, AI Wei-dang, BIAN Qiang, et al(赵子渊, 艾为党, 卞 强, 等). Manned Spaceflight(载人航天), 2023, 29(6): 757.
[20] XUE Shuang, WANG Xi, QIU Fu-guo, et al(薛 爽, 王 茜, 仇付国, 等). Acta Scientiae Circumstantiae(环境科学学报), 2016, 36(5): 1824.
[21] CHEN Li-juan, ZHANG Jin-xiu, FAN Wei, et al(陈丽鹃, 张锦秀, 范 伟, 等). Journal of Southern Agriculture(南方农业学报), 2024, 55(9): 2591.
[22] ZHANG Si-mei, DUAN Zeng-qiang, GU Ke-jun, et al(张斯梅, 段增强, 顾克军, 等). Soil(土壤), 2023, 55(4): 749.
[23] YUAN Chu-qi, LIANG Yuan, HAN Shuang, et al(袁楚齐, 梁 媛, 韩 爽, 等). Southwest China Journal of Agricultural Sciences(西南农业学报), 2024, 37(9): 2096.
[24] Zhang P, Wei T, Jia Z K, et al. Plos One, 2014, 9(3): e92839.
[25] Li H, Lu X, Xu Y, et al. Geoderma, 2019, 352: 96.
[26] ZHAO Xian-bo, LIU Tie-jun, XU Shi-guo, et al(赵显波, 刘铁军, 许士国, 等). Journal of Glaciology and Geocryology(冰川冻土), 2015, 37(1): 233.
[27] Xu H C, Yu G H, Yang L Y, et al. Journal of Hazardous Materials, 2013, 263: 412.
[28] Liu C, Li Z W, Berhe A A, et al. Geoderma, 2019, 334: 37.
[29] CUI Song, BU Xin-yu, ZHANG Fu-xiang(崔 嵩, 卜鑫宇, 张福祥). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2023, 43(12): 3937.
[30] Qin X Q, Yao B, Jin L, et al. Aquatic Geochemistry, 2020, 26(1): 71.
[31] Huguet A, Vacher L, Relexans S, et al. Organic Geochemistry, 2009, 40(6): 706.
[32] CUI Song, JIA Zhao-yang, SONG Zi-han, et al(崔 嵩, 贾朝阳, 宋梓菡, 等). Journal of Northeast Agricultural University(东北农业大学学报), 2020, 51(9): 70.
[33] Hou R J, Wang L W, O'Connor D, et al. Environment International, 2020, 144: 106040.
[34] Walz J, Knoblauch C, Böhme L, et al. Soil Biology & Biochemistry, 2017, 110: 34.
[35] Wu H H, Xu X K, Fu P Q, et al. CATENA, 2021, 198: 105058.
[36] WANG Li-li, ZHANG Ting-ting, WANG Zhong-jiang, et al(王丽丽, 张婷婷, 王忠江, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2023, 39(20): 188.
[37] YANG Na, WANG Si-min, YU Le-lin, et al(杨 娜, 王思敏, 于乐琳, 等). Chinese Journal of Ecology(生态学杂志), 2023, 42(12): 2895.
[38] Wu J, Brookes P C. Soil Biology & Biochemistry, 2005, 37(3): 507.
[39] ZHANG Guang-cai, YU Hui-bin, XU Ze-hua, et al(张广彩, 于会彬, 徐泽华, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2019, 39(9): 2873.
[40] GAO Jie, JIANG Tao, LI Lu-lu, et al(高 洁, 江 韬, 李璐璐, 等). Environmental Science(环境科学), 2015, 36(1): 151.
[41] Stedmon C A, Markager S, Bro R. Marine Chemistry, 2003, 82(3-4): 239.
[42] Chen B, Huang W, Ma S, et al. Water, 2018, 10(7): 861.
[43] Coble P G. Marine Chemistry, 1996, 51(4): 325.
[44] Singh S, D'Sa E J, Swenson E M. Science of the Total Environment, 2010, 408(16): 3211.
[45] Huang W, Wan Z R, Zheng D, et al. Frontiers of Environmental Science & Engineering, 2024, 18(8): 94.
[46] Guéguen C, Itoh M, Kikuchi T, et al. Frontiers in Marine Science, 2015, 2: 78.
[47] ZHOU Xiang-jun, GAO Ru-xia, QI Ting(周向军, 高茹霞, 齐 婷). Journal of Shanxi Agricultural Sciences(山西农业科学), 2023, 51(2): 157.
[48] YAN Cai-xia, LUO Yan-qing, NIE Ming-hua, et al(晏彩霞, 罗燕清, 聂明华, 等). Environmental Science(环境科学), 2022, 43(10): 4522.