Preparation and Photothermal Performance Study of Room Temperature Liquid Metal Core-Shell Nanomedicines
REN Xing-yu1, CHEN Huai1, GAO Si-bo2, WANG Guang-hua2, DUAN Liang-fei1*, YANG Hui-qin1*
1. Yunnan Key Laboratory of Biochemical Separation Analysis and Substance Transformation, Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
2. Yunnan Olightek Opto-electronic Technology Co., Ltd., Kunming Institute of Physics, Kunming 650223, China
Abstract:Photothermal therapy (PTT) has garnered significant interest as a promising alternative to conventional cancer treatments, owing to its low systemic toxicity, high targeting precision, and minimal invasiveness. Room-temperature liquid metals (LMs)—a class of functional materials exhibiting both metallic conductivity and fluidic processability—have emerged as attractive candidates for PTT applications. Their unique attributes, including fluidity, dispersibility, high thermal conductivity, efficient photothermal response, and biocompatibility, underscore their potential in this field. However, the practical application of LMs is hampered by their high surface tension and reflectivity, which limit photothermal conversion efficiency. Notably, the highly dynamic and dispersible nature of LM surface atoms offers a pathway for modulation via surface chemical modification. In this study, we employ sodium alginate (SA), a nontoxic and biocompatible natural polymer, to functionally tailor the surface of LMs. Through ultrasonication, a uniform SA coating was formed on LM nanoparticles, yielding well-dispersed core-shell nanostructures, termedLiquid metal@sodium alginate (LM@SA). The SA-modified nanoparticles exhibited remarkable photothermal performance: under 808 nm near-infrared laser irradiation at 1.5 W·cm-2, the heating rate reached 5.4 ℃·min-1, with a temperature plateau of 63 ℃ attained within 4 minutes. The photothermal conversion efficiency was calculated to be 41.9%. Furthermore, the SA coating significantly enhanced colloidal and thermal stability, as evidenced by consistent heating performance over eight consecutive laser on-off cycles without noticeable decay. In summary, this work demonstrates a biocompatible polymer-based strategy for effectively regulating the surface optical properties of LMs. The resulting LM@SA nanomedicine exhibits efficient, stable photothermal behavior, offering a promising platform for precise, effective tumor photothermal therapy.
任星雨,陈 怀,高思博,王光华,段良飞,杨慧芹. 室温液态金属核壳型纳米药物的制备及光热性能研究[J]. 光谱学与光谱分析, 2025, 45(12): 3366-3372.
REN Xing-yu, CHEN Huai, GAO Si-bo, WANG Guang-hua, DUAN Liang-fei, YANG Hui-qin. Preparation and Photothermal Performance Study of Room Temperature Liquid Metal Core-Shell Nanomedicines. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(12): 3366-3372.
[1] Cao W, Chen H D, Yu Y W, et al. Chinese Medical Journal, 2021, 134(7): 783.
[2] Fu M M, Shen Y F, Zhou H, et al. Journal of Materials Science & Technology, 2023, 142: 22.
[3] Shang T Y, Yu X Y, Han S S, et al. Biomaterials Science, 2020, 8(19): 5241.
[4] Xiong R H, Hua D W, van Hoeck J V, et al. Nature Nanotechnology, 2021, 16(11): 1281.
[5] Li Y, Wang J, Li Y, et al. Regenerative Biomaterials, 2024, 11: rbae126.
[6] Fan L L, Duan M H, Sun X Y, et al. ACS Applied Bio Materials, 2020, 3(6): 3553.
[7] Wagner S, Bauer S. MRS Bulletin, 2012, 37(3): 207.
[8] Pavithra K G, SundarRajan P, Kumar P S, et al. Chemosphere, 2023, 312: 137314.
[9] Wang C Y, Wang T L, Zeng M Q, et al. The Journal of Physical Chemistry Letters, 2023, 14(44): 10054.
[10] Wu S, Zhang X, Wang R Z, et al. Energy Storage Materials, 2023, 57: 205.
[11] Lu G X, Ni E L, Jiang Y Y, et al. Small, 2024, 20(9): 2304147.
[12] Guo J T, Duan L F, Yang W, et al. Nano Energy, 2024, 131: 110305.
[13] Yan J J, Lu Y, Chen G J, et al. Chemical Society Reviews, 2018, 47(8): 2518.
[14] Hu J J, Liu M D, Chen Y, et al. Biomaterials, 2019, 207: 76.
[15] Liu R X, Gong L J, Zhu X Y, et al. Advanced Healthcare Materials, 2022, 11(11): 2102584.
[16] Wang J L, Zhao X, Yin S H, et al. ACS Sustainable Chemistry & Engineering, 2024, 13(1): 415.
[17] Yang N, Gong F, Ge J, et al. Materials Today Nano, 2023, 21: 100285.
[18] Zhao Z B, Soni S, Lee T, et al. Advanced Materials, 2023, 35(1): 2203391.
[19] Zhang Y X, Wang C Y, Yin M Y, et al. Angewandte Chemie, 2024, 136(1): e202311678.
[20] Zhang Y Y, Guo Z Z, Zhu H R, et al. Journal of the American Chemical Society, 2022, 144(15): 6779.
[21] Lu H D, Tang S Y, Zhu J Y, et al. Advanced Functional Materials, 2024, 34(6): 2311300.
[22] Ehrman R N, Tran N, Trashi I, et al. Molecular Pharmaceutics, 2025, 22(4): 1881.
[23] Luo H H, Zhang L Y, Yang H Q, et al. Advanced Functional Materials, 2025, 35(2): 2413156.
[24] Hu Y J, Zhuo H, Zhang Y, et al. Advanced Functional Materials, 2021, 31(51): 2106761.
[25] Zhu P, Gao S S, Lin H, et al. Nano Letters, 2019, 19(3): 2128.
[26] Li L, Wang K Z, Wang K J, et al. Chemistry—A European Journal, 2023, 29(64): e202301774.
[27] Wang S, Lv Y G. Biomaterials Advances, 2024, 161: 213872.
[28] Hou L, Wu P Y. Carbohydrate Polymers, 2019, 205: 420.
[29] Larosa C, Salerno M, de Lima J S, et al. International Journal of Biological Macromolecules, 2018, 115: 900.
[30] El Foulani A A, Ounas O, Tahiri M, et al. Journal of Polymers and the Environment, 2023, 31(11): 4909.
[31] Zhang T J, Zhang W L, Wang B X, et al. Journal of Intelligent Material Systems and Structures, 2018, 29(2): 232.
[32] Pearce B L, Berg N G, Ivanisevic A. Materials Research Letters, 2017, 5(2): 124.
[33] Detweiler Z M, Wulfsberg S M, Frith M G, et al. Surface Science, 2016, 648: 188.
[34] Wei W, Ai L B, Li M H, et al. Chemistry—An Asian Journal, 2024, 19(6): e202301038.
[35] Wang D W, Rao W. Applied Materials Today, 2022, 29: 101583.
[36] Hu J J, Liu M D, Gao F, et al. Biomaterials, 2019, 217: 119303.
[37] Wang H Y, Chang J J, Shi M W, et al. Angewandte Chemie, 2019, 131(4): 1069.
[38] Yu Z H, He Y L, Feng W W, et al. Materials Today Communications, 2021, 28: 102519.
[39] Hessel C M, Pattani V P, Rasch M, et al. Nano Letters, 2011, 11(6): 2560.
[40] Tian Q W, Jiang F R, Zou R J, et al. ACS Nano, 2011, 5(12): 9761.
[41] Qi Y Q, Jin T, Yuan K, et al. Journal of Materials Science & Technology, 2022, 127: 144.
[42] Zhang Y Y, Zhu H R, An S, et al. Nature Communications, 2024, 15(1): 5395.