Polarization Optimization of Quantitative Analysis of K Element in Paddy Field Soil by Laser-Induced Breakdown Spectroscopy
LIANG Jia-qi1, 2, YAO Ming-yin1, 2, LIU Mu-hua1, 2, LUO Zi-ling2, WEI Hai-bo2, XU Jiang1, 2*
1. College of Engineering in Jiangxi Agricultural University, Jiangxi Provincial Key Laboratory of Modern Agricultural Equipment, Nanchang 330045, China
2. Higher Educational Lab of Optics-Electrics Application of Biomaterials, Nanchang 330045, China
Abstract:This study demonstrates enhanced precision and stability in laser-induced breakdown spectroscopy (LIBS) for determining potassium (K) content in paddy soil via polarization-resolved optimization. A polarization-resolved spectroscopic system was built to collect LIBS and polarization-resolved LIBS (PRLIBS) data of paddy soil samples under varying laser excitation energies. A comparative analysis of full spectra highlighted the advantages of PRLIBS. Within 744~775 nm, 3D spectral intensity maps of LIBS and PRLIBS were generated, with the K I 766.49 nm line (most intense characteristic peak) selected for analysis. Both techniques showed consistent spectral trends with increasing excitation energy, validating polarization-resolved optimization for LIBS. Linear correlation analysis between K signal intensity and excitation energy for samples N2K1—N2K4 revealed higher R2 values for PRLIBS (0.995 86, 0.979 51, 0.996 11, 0.993 57) than LIBS (0.970 16, 0.944 98, 0.991 53, 0.989 24). PRLIBS, via Glan-Thompson prism birefringence, filters high-polarization ordinary light (o-ray) and transmits low-polarization extraordinary (e-ray), reducing background noise interference on plasma characteristic peaks and improving K detection stability in paddy soil. Comparison of signal intensity distributions and relative standard deviations (RSD) showed superior PRLIBS stability at 35, 55, and 75 mJ, indicating strong characteristic line resolution by the polarizing prism under low excitation energy. Calibration curve fitting at 35 and 55 mJ yielded higher R2 for PRLIBS (0.944 82, 0.958 32) than LIBS (0.150 69, 0.473 95), confirming enhanced characteristic signal stability. A PRLIBS quantitative model was established, with the 55 mJ excitation prediction model showing lower root mean square error (RMSE) than 35 mJ. PRLIBS significantly improves spectral stability and accuracy, particularly under low excitation energy, providing a valuable reference for rapid paddy soil nutrient detection.
梁佳琪,姚明印,刘木华,罗子灵,魏海波,徐 将. 稻田土壤中K元素激光诱导击穿光谱定量分析偏振优化研究[J]. 光谱学与光谱分析, 2025, 45(11): 3105-3112.
LIANG Jia-qi, YAO Ming-yin, LIU Mu-hua, LUO Zi-ling, WEI Hai-bo, XU Jiang. Polarization Optimization of Quantitative Analysis of K Element in Paddy Field Soil by Laser-Induced Breakdown Spectroscopy. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(11): 3105-3112.
[1] LIU Shu-jun, LI Dong-chu, HAN Tian-fu, et al(刘淑军, 李冬初, 韩天富, 等). Journal of Plant Nutrition and Fertilizers(植物营养与肥料学报), 2024, 30(3): 482.
[2] LI Zhi-xin, HU Ming-ming, TANG Yuan, et al(李志欣, 胡明明, 唐 源, 等). Journal of Plant Nutrition and Fertilizers(植物营养与肥料学报), 2025, 31(2): 267.
[3] Lau C, Lu X F, Hoy K S, et al. Journal of Environmental Sciences, 2025, 153(1): 302.
[4] WAN Xi, LIU Yong, ZHENG Yu-ting, et al(万 曦, 刘 涌, 郑玉婷, 等). Chinese Journal of Analysis Laboratory(分析试验室), 2024, 43(3): 420.
[5] Barla A, Triantafyllou A, McClelland W, et al. Chemical Geology, 2023, 636: 121635.
[6] Xu Y J, Zhang W P, Yue X P, et al. Bioresources, 2016, 11(2): 3964.
[7] LI Fan, YANG Chun-sheng, DING Yan, et al(李 帆, 杨春晟, 丁 妍, 等). Chinese Journal of Analysis Laboratory(分析试验室), 2019, 38(5): 542.
[8] Hassan J, Karbasi M H. Current Analytical Chemistry, 2022, 18(9): 999.
[9] Soomro W A, Khuhawar M Y, Jahangir T M, et al. Environmental Monitoring and Assessment, 2025, 197(3): 235.
[10] Dobrzyńska J, Dbrowska M, Dobrowolski R, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2023, 205: 106706.
[11] Béni Á, Nagy D, Kapitány S, et al. Microchemical Journal, 2019, 150: 104077.
[12] Asch J, Johnson K, Mondal S, et al. Journal of Plant Nutrition and Soil Science, 2022, 185(2): 308.
[13] Singh M, Yadav P, Garg V K, et al. Rendiconti Lincei. Scienze Fisiche e Naturali, 2022, 33(4): 823.
[14] Ullaha R, Abbas Z, Bila M, et al. Journal of King Saud University—Science, 2022, 34(5): 102070.
[15] Sirven J B, Quéré C, Maisonneuve J, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2025, 225: 107123.
[16] Lin X M, Zhang Z J, Lin J J, et al. Analytical Letters, 2024, 57(12): 1829.
[17] Xie W P, Xu J, Huang L, et al. Agriculture, 2024, 14(11): 2053.
[18] Pan T T, Dai X R, Wang W, et al. Computers and Electronics in Agriculture, 2025, 231: 110029.
[19] Wubetu G A, Costello J T, Kelly T J, et al. Journal of Applied Spectorscopy. 2023, 90(1): 116.
[20] Lu C X, Jiang X P, Zhang J N, et al. Plasma Science and Technology, 2019, 21(3): 034014.
[21] CHENG De-wei, LU Jing-qi, JIA Xin-ting, et al(程德伟, 卢景琦, 贾信庭, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2020, 40(1): 277.
[22] Yao M Y, Wan Q, Liu M H, et al. Applied Optics, 2024, 63(32): 8442.