Abstract:Ganoderma lucidum (G. lucidum), a precious fungus with a long history of medicinal use, faces challenges in authenticity identification and quality evaluation due to its diverse species and varying growth environments. This study integrates near-infrared spectroscopy (NIRS)and spectral preprocessing methods to analyze G. lucidum samples from different growthenvironments in the market. By collecting and analyzing NIRS data of five G. lucidum samples, spectral preprocessing methods—including baseline correction (first-/second-order derivatives, continuous wavelet transform (CWT)) and scattering correction (multiplicative scatter correction (MSC) , standard normal variate transformation (SNV))—were applied to eliminate background noise. This enhanced the accuracy of spectral data in reflecting the intrinsic characteristics of G. lucidum, with a focus on the distribution of characteristic absorption peaks and hydrogen-containing groups in the NIRS region. The results revealed significant differences in NIRS between the stipes and pilei of G. lucidum from distinct growth environments, exhibiting unique characteristic absorption peaks and hydrogen-containing group distributions. These absorption peaks were closely associated with active components in G. lucidum, where environmental factors (e. g., temperature, humidity, light intensity) and cultivation conditions (e. g., substrates such as sawdust, wheat bran, and gypsum) were identified as key determinants of active component synthesis and distribution. Environmental factors influence growth cycles and metabolic activities, while cultivation substrates affect growth rates, mycelial vigor, biomass, and morphological parameters (stipe length, stipe diameter, pileus diameter, pileus thickness). This method provides an effective approach for the authenticity identification of G. lucidum. Its implementation significantly enhances quality control of G. lucidum products, facilitates comprehensive quality evaluation, aids in eliminating inferior products in the market, and ensures consumers select appropriate G. lucidum varieties to meet market demands.
谭方萍,鲁同所. 不同生长环境下的灵芝近红外指纹图谱研究[J]. 光谱学与光谱分析, 2025, 45(07): 1968-1978.
TAN Fang-ping, LU Tong-suo. Study of Near-Infrared Fingerprints of Ganoderma Lucidum in Different Growth Environments. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(07): 1968-1978.
[1] Chrysostomou P P, Freeman E, Murphy M M, et al. Frontiers in Toxicology, 2024, 6: 1469348.
[2] JIAO Hui-ping, LIAN Hua, LI Run-tian, et al(焦慧平,莲 花,李润甜,等). Chemical Research and Application(化学研究与应用), 2025, 37(2): 439.
[3] Di Rita V, Moceri A, Schumer M, et al. Journal of the International Neuropsychological Society, 2023, 29(s1): 466.
[4] WU Yuan-lang(吴远浪). Grain Oil and Feed Technology(粮油与饲料科技), 2024, (5): 207.
[5] SHAO Chen-yang, ZHAO Yi-mo, LU Li-li, et al(邵晨阳, 赵一墨, 鹿莉莉, 等). Chemical Bulletin(化学通报), 2024, 87(8): 898.
[6] LIU Zi-yu, HOU Yu-wen, XU Qiang, et al(刘子毓, 侯玉文, 许 强, 等). Electro-Optics Technology Application(光电技术应用), 2012, 27(1): 25.
[7] WANG Jian-wei, YE Sheng(王建伟, 叶 升). China Condiment(中国调味品), 2021, 46(9): 171.
[8] Guzzi D, Baldi M, Bianchi T, et al. Engineering Proceedings, 2023, 51(1): 31.
[9] Ning S Y, Cao J W, Liu X Y, et al. Crystals, 2022, 12(7): 910.
[10] Jiang Z W, Zhong L J, Xue J J, et al. Microchemical Journal, 2023, 193.
[11] Liu Y, Lan W L, Wang Y H, et al. International Journal of Medicinal Mushrooms, 2023, 25(6): 87.
[12] CHEN Pu, YANG Jian, CHU Xiao-li, et al(陈 瀑, 杨 健, 褚小立, 等). Chinese Journal of Analytical Chemistry(分析化学), 2024, 52(9): 1213.
[13] Santos D T E C, C K P, Naara A A, et al. Food Research International, 2022, 161: 111759.
[14] Stevanovic M M, VuKomanovic M, Milenkovic M, et al. Frontiers in Materials, 2021, 8: 748813.
[15] Gao R, Qi P H, Zhang Z H. Signal Processing, 2021, 181: 107893.
[16] LIN Guo-wei, WANG Ming-wei, LI Yan, et al(林国伟, 王铭巍, 李 岩, 等). Science Technology and Engineering(科学技术与工程), 2023, 23(25): 10975.
[17] Peyman A, Ghoreishi M, Babaei L, et al. Journal of Refractive Surgery, 2024, 40(12): e956.
[18] Yang Z J, Murat C, Nakano H, et al. Marine Pollution Bulletin, 2023, 197: 115700.
[19] Zhou X, Lu Y C, Hua Y X, et al. Physics in Medicine and Biology, 2023, 68(7): 075011.
[20] LIU Xin-zhuo, DENG Ling-li, WANG Wan-lan, et al(刘新卓, 邓伶莉, 王婉兰, 等). Journal of Xiamen University (Natural Science)[厦门大学学报(自然科学版)], 2016, 55(4): 564.
[21] Aishima K. Japan Journal of Industrial and Applied Mathematics, 2023, 40(1): 691.
[22] GU Li, FAN Bao-lin, SUN Qian-qian, et al(谷 丽, 范宝琳, 孙倩倩, 等). Synthetic Fibers in China(合成纤维), 2024, 53(6): 54.
[23] Amer M M, El-Khateeb B Z. Luminescence: the Journal of Biological and Chemical Luminescence, 2024, 39(7): e4815.
[24] HE Jin-zhe, SHAO Ping, SUN Pei-long(何晋浙, 邵 平, 孙培龙). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2010, 30(5): 1202.
[25] LIU You-ju, YANG Qing-ci, YANG Zeng-gang(刘有菊, 杨庆辞, 杨增刚). Journal of Baoshan University(保山学院学报), 2017, 36(5): 9.
[26] Jia Z X, Shi C, Yang X T, et al. Comprehensive Reviews in Food Science and Food Safety, 2023, 22(6): 4644.