LIBS Quantitative Analysis of Martian Analogues Library (MAL)
LIU Chang-qing, LING Zong-cheng*
Shandong Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, School of Space Science and Technology, Institute of Space Sciences, Shandong University, Weihai 264209, China
Abstract:Laser-induced breakdown spectroscopy (LIBS) is a valuable technique for elemental analysis from a laser-induced plasma. The Zhurong rover in the Tianwen-1 Mars exploration mission carries a payload named Mars Surface Composition Detector (MarSCoDe), which can obtain geochemical compositions on Mars. However, the interpretation of MarSCoDe-LIBS spectra will be affected by the complex environment and rock types. With an intent to acquire accurate chemical compositions on Mars using MarSCoDe-LIBS spectra, this work evaluates the performance of several algorithms using the independent third-party LIBS spectral library. This work uses 351 Martian Analogues Library (MAL) to build the LIBS spectral library in a simulated Martian environment. Several models are built based on the LIBS spectra and chemical compositions using nine different algorithms, including machine learning, integrated learning, and deep learning, to derive the major elements (SiO2, TiO2, Al2O3, Fe2O3T, MgO, CaO, Na2O, and K2O). The parameters of these models are confirmed using the cross-validation method, and the performance of these models is evaluated using the RMSE values of the test set. The training set and test set for most models have similar RMSE values except for the ordinary least square method, suggesting no obvious over fitting for these models. In addition, the MLP and GBR models perform better for major elements. Moreover, the RMSE values of the models are similar to those of the published models for ChemCam and SuperCam, suggesting these models have a good performance and can acquire accurate chemical compositions of unknown targets based on their LIBS spectra. This work is valuable for building models suitable for interpreting MarSCoDe-LIBS spectra acquired on Mars.
Key words:Mars; LIBS; Machine learning; Ensemble learning; Deep learning; Chemical compositions
[1] Fiddler M N, Begashaw I, Mickens M A, et al. Sensors, 2009, 9(12): 10447.
[2] Musazzi S, Perini U. Laser-Induced Breakdown Spectroscopy. Springer Heidelberg New York Dordrecht London: Springer Series in Optical Sciences, 2014.
[3] Rai V, Thakur S N. Physics and Dynamics of Plasma in Laser-Induced Breakdown Spectroscopy. Laser-Induced Breakdown Spectroscopy. City: Elsevier, 2020: 71.
[4] Wiens R C, Maurice S, Barraclough B, et al. Space Science Reviews, 2012, 170(1): 167.
[5] Maurice S, Wiens R, Saccoccio M, et al. Space Science Reviews, 2012, 170(1-4): 95.
[6] Cousin A, Sautter V, Payre V, et al. Icarus, 2017, 288: 265.
[7] Cousin A, Meslin P Y, Wiens R C, et al. Icarus, 2015, 249: 22.
[8] Meslin P-Y, Gasnault O, Forni O, et al. Science, 2013, 341(6153): 1238670.
[9] Maurice S, Clegg S M, Wiens R C, et al. Journal of Analytical Atomic Spectrometry, 2016, 31(4): 863.
[10] Nachon M, Clegg S M, Mangold N, et al. Journal of Geophysical Research-Planets, 2014, 119(9): 1991.
[11] L'haridon J, Mangold N, Meslin P-Y, et al. Icarus, 2018, 311: 69.
[12] Lasue J, Clegg S M, Forni O, et al. Journal of Geophysical Research-Planets, 2016, 121(3): 338.
[13] Gasda P J, Anderson R B, Cousin A, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2021, 181: 106223.
[14] Maurice S, Wiens R C, Bernardi P, et al. Space Science Reviews, 2021, 217(3): 47.
[15] Wiens R C, Maurice S, Robinson S H, et al. Space Science Reviews, 2021, 217(1): 4.
[16] Wiens R C, Udry A, Beyssac O, et al. Science Advances, 2022, 8(34): doi: 10.1126/sciadv.abo3399.
[17] Clavé E, Benzerara K, Meslin P Y, et al. Journal of Geophysical Research: Planets, 2023, 128(6): e2022JE007463.
[18] Beyssac O, Forni O, Cousin A, et al. Journal of Geophysical Research: Planets, 2023, 128(7): e2022JE007638.
[19] Beck P, Forni O, Dehouck E, et al. Secondary Mineralogy of Jezero Delta Rocks from Hydrogen and Carbon Emission Lines in Supercam Libs Data. 54th Lunar and Planetary Science Conference,2023. 54: 1241.
[20] Zou Y, Zhu Y, Bai Y, et al. Advances in Space Research, 2021, 67(2): 812.
[21] Xu W, Liu X, Yan Z, et al. Space Science Reviews, 2021, 217(5): 64.
[22] Liu C, Ling Z, Wu Z, et al. Communications Earth & Environment, 2022, 3(1): 280.
[23] Zhao Y-Y S, Yu J, Wei G, et al. National Science Review, 2023, 10(6): https:/doi.org/10.1093/nsr/nwad056.
[24] Ready J. Effects of High-Power Laser Radiation. Elsevier, 2012.
[25] Tognoni E, Palleschi V, Corsi M, et al. From Sample to Signal in Laser-Induced Breakdown Spectroscopy: a Complex Route to Quantitative Analysis. Laser-Induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications. City: Cambridge Univ. Press, 2006: 122.
[26] Mcmillan N J, Mcmanus C E, Harmon R S, et al. Analytical and Bioanalytical Chemistry, 2006, 385(2): 263.
[27] Rauschenbach I, Lazic V, Pavlov S, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2008, 63(10): 1205.
[28] Rapin W, Bousquet B, Lasue J, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2017, 137: 13.
[29] Sallé B, Lacour J-L, Mauchien P, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2006, 61(3): 301.
[30] Cousin A, Sautter V, Fabre C, et al. Journal of Geophysical Research: Planets, 2012, 117(E10): E10002.
[31] Trainer M G, Wong M H, Mcconnochie T H, et al. Journal of Geophysical Research: Planets, 2019, 124(11): 3000.
[32] Davy R, Davis J A, Taylor P A, et al. Journal of Geophysical Research: Planets, 2010, 115(E3): E00E13.
[33] Cousin A, Forni A, Maurice S, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2011, 66(11-12): 805.
[34] Ehlmann B L, Edwards C S. Annual Review of Earth and Planetary Sciences, 2014, 42: 291.
[35] Pla-Garcia J, Rafkin S C, Kahre M, et al. Icarus, 2016, 280: 103.
[36] Wiens R C, Maurice S, Lasue J, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2013, 82: 1.
[37] Anderson R B, Clegg S M, Frydenvang J, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2017, 129: 49.
[38] Clegg S M, Wiens R C, Anderson R, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2017, 129: 64.
[39] Anderson R B, Forni O, Cousin A, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2022, 188: 106347.
[40] Liu C, Wu Z, Fu X, et al. Remote Sensing, 2022, 14(12): 2937.
[41] Shandong University, School of Space Science and Physics, Zongcheng Ling, Changqing Liu(山东大学,空间科学与物理学院,凌宗成,刘长卿). Martian LIBS spectral Database. (火星LIBS光谱数据库). V1. 0. National Space Science Data Center(国家空间科学数据中心). 10.12176/03.70.00001-V01, 2023-11-09.
[42] Liu C, Ling Z, Zhang J, et al. Remote Sensing, 2021, 13(23): 4773.
[43] Noll R. Laser-Induced Breakdown Spectroscopy. Laser-Induced Breakdown Spectroscopy. City: Springer, 2012: 7.
[44] Kashiwakura S, Wagatsuma K J I I. ISIJ International, 2020, 60(6): 1245.
[45] Fang Z, Tao Y, Wang W, et al. Journal of Raman Spectroscopy, 2018, 49(12): 1972.
[46] Huang J, Dong M, Lu S, et al. Journal of Analytical Atomic Spectrometry, 2018, 33(5): 720.
[47] Erler A, Riebe D, Beitz T, et al. Sensors, 2020, 20(2): 418.
[48] Guodong W, Lanxiang S, Wei W, et al. Plasma Science and Technology, 2020, 22(7): 074002.
[49] Wu X, Shin S, Gondhalekar C, et al. Foods, 2023, 12(2): 402.
[50] Lu H, Hu X, Ma L, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2020, 164: 105753.
[51] Mourched B, Abdallah M, Hoxha M, et al. Sustainability, 2023, 15(14): 11468.