1. College of Geographical Science and Tourism, Xinjiang Normal University, Urumqi 830054, China
2. Laboratory of Arid Zone Lake Environment and Resources, Xinjiang Normal University, Urumqi 830054, China
3. College of Computer Science and Technology, Tiangong University, Tianjin 300380, China
4. School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
Abstract:Cobalt (Co) was classified as a group 2B carcinogen by the International Agency for Research on Cancer. It is potentially harmful to the safety of the entire urban ecosystem, and it is particularly important to quickly and accurately detect soil Co content. Hyperspectral techniques have great potential for inversion of soil Co content. 88 surface (0~20 cm) soil samples were collected from Urumqi, Xinjiang, to determine the Co content and original spectral reflectance. The original spectral reflectance was preprocessed and applied with 17 types of transformation, which include the root-mean-square (RMS), the logarithm of the logarithm (LT), the inverse of the logarithm (RL), the inverse of the logarithm (RT), the logarithm of the inverse (AT), the first-order differentiation (FD), the second-order differentiation (SD), the inverse first-order differentiation (RTFD) (RTSD), logarithmic first-order differentiation (LTFD), logarithmic second-order differentiation (LTSD), root-mean-square first-order differentiation (RMSFD), root-mean-square second-order differentiation (RMSSD), logarithmic first-order differentiation of the inverse (ATFD), logarithmic second-order differentiation of the inverse (ATSD), logarithmic first-order differentiation of the inverse (RLFD) and logarithmic second-order differentiation ( RLSD). Then, the Co content and 18 types of soil spectral data were subjected to Pearson correlation analysis (PCC) and CARS to screen the spectral signature variables for modeling. The soil Co content was taken as the dependent variable, and the screened spectral feature variables were taken as independent variables. Based on three algorithms, namely partial least squares regression (PLSR), random forest regression (RFR), and support vector machine regression (SVMR), the hyperspectral inversion models of urban soil Co content were constructed, and the coefficient of determination (R2), the root-mean-square error (RMSE) and the mean absolute error (MAE) were used as the evaluation indexes. Some conclusions can be drawn: The hyperspectral models' estimation accuracy and stability for urban soil's Co content are in descending order of the RFR, PLSR, and SVMR models. The best estimation model for Co content is the ATFD-RFR model (R2=0.871,RMSE=0.124,MAE=0.273) which the RPD is 7.90; in this model, compared with the R-RFR model, the R2 improved from 0.536 to 0.871, RMSE and MAE reduced by 0.32 and 0.243, respectively. Spectral transform can effectively enhance the spectral features; enhancement of spectral features is most significant with first-order differential transform, among which the RTFD can not only effectively enhance the spectral features of Co but also improve the estimation accuracy of the model very well. The RFR model can be extended in oasis urban soil hyperspectral inversion estimation when the spatial heterogeneity of sample sites is insignificant, and the measured values are low and homogeneous.
[1] International Agency for Research on Cancer, World Health Organization. Group Ⅱ Carcinogen List. 2017. www.nmpa.gov.cn.
[2] LIU Wu-zhong, WANG Jian-ming, ZHANG Hong, et al(刘武忠, 王剑明, 张 红, 等). Occupational Health and Emergency Rescue(职业卫生与应急救援), 2016, 34(2): 111.
[3] LI Peng, DING Da-lian, ZENG Xiang-li, et al(李 鹏, 丁大连, 曾祥丽, 等). Chinese Journal of Otology(中华耳科学杂志), 2015, 13(1): 57.
[4] Wu Y H, Liu Q Y, Ma J, et al. Environmental Pollution, 2022, 293: 118554.
[5] Sharma S, Nagpal A K, Kaur I. Food Chemistry, 2018, 255(30): 15.
[6] LAI Shu-ya, DONG Qiu-yao, SONG Chao, et al(赖书雅, 董秋瑶, 宋 超, 等). Geology in China(中国地质), 2023, 50(1): 222.
[7] DAI Yan-yan, CHAO Jin-long, CAI Xin, et al(戴燕燕, 钞锦龙, 蔡 昕, 等). Jouranl of Taiyuan Normal University (Natural Science Edition)[太原师范学院(自然科学版)], 2020, 19(2): 78.
[8] Alexakis D. Archives of Agronomy and Soil Science, 2016, 62(3): 359.
[9] Sukalic A, Ahmetovic N, Mackic S, et al. ACS Agriculturae Conspectus Scientificus, 2017, 83(1): 45.
[10] JI Jian-wan, ZHANG Rui, SHA Jin-ming, et al(季建万, 张 锐, 沙晋明, 等). Journal of Fujian Normal University (Natural Science Edition)[福建师范大学学报(自然科学版)], 2019, 35(5): 23.
[11] Sawat R, Rasim N, Abliz A, et al. International Journal of Applied Earth Observation and Geoinformation, 2018, 73: 14.
[12] YUAN Zi-ran,WEI Li-fei,ZHANG Yang-xi,et al(袁自然,魏立飞,张杨熙,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2020,40(2):567.
[13] JIANG Zhen-lan, YANG Yu-sheng, SHA Jin-ming(江振蓝, 杨玉盛, 沙晋明). Acta Geographica Sinica(地理学报), 2017, 72(3): 533.
[14] Choe E, van der Meer P, van Ruitenbeek P, et al. Remote Sensing of Environment, 2008, 112: 3222.
[15] Wei L F, Yuan Z R, Zhong Y F, et al. Applied Sciences, 2019, 9: 1943.
[16] Lin N, Jiang R Z, Li G J, et al. Ecological Indicators, 2022, 143: 109330.
[17] Han L, Chen R, Zhu H L, et al. Sustainability, 2020, 12: 1476.
[18] Ministry of Environmental Protection of the People's Republic of China(中华人民共和国环境保护部). HJ803-2016 Soil and Sediment—Determination of Aqua Regia Extracts of 12 Metal Elements—Inductivity Coupled Plasma Mass Spectrometry(HJ803-2016 土壤和沉积物 12种金属元素的测定 王水提取-电感耦合等离子体质谱法). Beijing: China Environmental Science Press(北京: 中国环境科学出版社), 2016.
[19] Liu W W, Li M J, Zhang M Y, et al. Environmental Science and Pollution Research, 2020, 27: 22935.
[20] Wei L F, Pu H C, Wang Z X, et al. Sensors, 2020, 20: 4056.
[21] HAYRAT Adila,EZIZ Mamattursun,JIN Wan-gui, et al(阿地拉·艾来提, 麦麦提吐尔逊·艾则孜, 靳万贵, 等). Geology in China(中国地质),2020,47(6):1915.
[22] Hong Y S, Liu Y L, Chen Y Y, et al. Geoderma, 2019, 337: 758.