1. Key Laboratory of Advanced Energy and Power, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
2. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
3. School of Mechanical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
Abstract:Hydrogen-fueled gas turbines are the most promising research direction at present. Although hydrogen fuel, especially green hydrogen energy, can lower greenhouse gas emissions and enhance energy efficiency, the thermoacoustic oscillation phenomena are easily generated by hydrogen energy's high combustion rate and quick chemical reaction rate during combustion. The coupling of an acoustic wave and heat release at a phase difference of less than 90° results in thermoacoustic oscillation, which can wear down a gas turbine and even harm its components. Flame heat release variation, acoustic pressure pulsation, flow field fluctuation in the combustion chamber, etc. are some of the sources of thermoacoustic oscillation. The coupling analysis of these variables can increase our comprehension of thermoacoustic oscillation and give us a theoretical foundation for forecasting it. The parameters used in the research of thermoacoustic oscillations include dynamic pressure, flame heat release, temperature, equivalent ratio, and velocity, and the related test techniques should be capable of high-frequency measurements of them. The measurement means of dynamic pressure mainly include pressure sensors and microphones. Due to the fast time domain response and obvious dynamic characteristics of pressure, it is the key parameter of the thermoacoustic coupling effect and is most widely studied. OH, chemiluminescence, or fluorescence signals are mostly used to characterize the flame heat release, and the measurement methods include Intensified CCD(ICCD), a photomultiplier tube(PMT), planar-laser-induced fluorescence(PLIF), etc. Tunable diode laser absorption spectroscopy(TDLAS), PLIF, Raman spectroscopy (RS), and other optical diagnostic techniques for temperature measurement are available in addition to the widely used thermocouples. Since the equivalence ratio directly impacts combustion parameters, it is challenging to measure dynamic changes in the equivalence ratio using conventional methods like flue gas analyzers. TDLAS, PLIF, laser-induced breakdown spectroscopy(LIBS), and other optical measurement techniques were later developed, and they are all capable of obtaining dynamic changes in the equivalence ratio. Velocity pulsation is a parametric quantity that acts directly on thermoacoustic oscillations, and measurement techniques include one-dimensional dual microphone velocimetry, hot-wire anemometry, laser Dopplervelocimetry (LDV), and multi-dimensional particle image velocimetry measurement (PIV), schlieren, etc. So far, most of the techniques on thermoacoustic oscillation measurement are relatively well developed. This paper lists the principles of these combustion diagnostic techniques and their applications to thermoacoustic oscillation or unstable combustion phenomena, and summarizes the development and prospects of thermoacoustic oscillation measurement.
刘 艳,杨小帆,熊 燕,郭沐林,成泽牧,邵卫卫,徐 祥. 燃气轮机燃烧场热声振荡的测试研究进展[J]. 光谱学与光谱分析, 2024, 44(11): 3008-3019.
LIU Yan, YANG Xiao-fan, XIONG Yan, GUO Mu-lin, CHENG Ze-mu, SHAO Wei-wei, XU Xiang. Progress in the Measurement of Thermoacoustic Oscillations in the
Combustion Field of Gas Turbines. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3008-3019.
[1] Roy R, Nguyen K, Stuart T, et al. Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, 2022, 3B: 03BT04A001.
[2] Beita J, Talibi M, Sadasivuni S, et al. Hydrogen, 2021, 2(1): 33.
[3] Rayleigh. Nature, 1878, 18(455): 319.
[4] Nair V, Thampi G, Sujith R I. Journal of Fluid Mechanics, 2014, 756: 470.
[5] Ren Y, Li S, Cui W, et al. Combustion and Flame, 2017, 176: 479.
[6] HU Xue-chao, BI Xiao-tian, LIU Ce, et al(扈学超,毕笑天,刘 策,等). Journal of Tsinghua University(Science and Technology)[清华大学学报(自然科学版)], 2023, 63(4): 572.
[7] Lieuwen T, Neumeier Y. Proceedings of the Combustion Institute, 2002, 29: 99.
[8] REN Le-le, XIONG Yan, LIU Zhi-gang, et al(任乐乐,熊 燕,刘志刚,等). Journal of Engineering for Thermal Energy and Power(热能动力工程), 2023, 38(5): 30.
[9] Ayoolan B O, Balachandran R, Frank J H, et al. Combustion and Flame, 2006, 144(1-2): 1.
[10] Giezendanner-Thoben R, Meier U, Meier W, et al. Flow Turbulence and Combustion, 2005, 75(1-4): 317.
[11] Najm H N, Paul P H, Mueller C J, et al. Combustion and Flame, 1998, 113(3): 312.
[12] Paul P H, Najm H N. Proceedings of the 27th International Symposium on Combustion, Univ Colorado, Boulder, Co, 1998, 43.
[13] Kariuki J, Dowlut A, Yuan R, et al. Proceedings of the Combustion Institute, 2015, 35: 1443.
[14] Tashiro Y, Biwa T, Yazaki T. Review of Scientific Instruments, 2005, 76(12): 124901.
[15] Zhao D, Ji C, Li S, et al. Energy, 2014, 65: 517.
[16] Li F, Du M, Xu L. IEEE Sensors Journal, 2019, 19(24): 12271.
[17] Li H, Zhou X, Jeffries J B, et al. AIAA Journal, 2007, 45(2): 390.
[18] Shimura M, Tanahashi M, Miyauchi T, et al. Thermochimica Acta, 2009, 495(1-2): 95.
[19] Liu C, Cao Z, Lin Y, et al. IEEE Transactions on Instrumentation and Measurement, 2018, 67(6): 1338.
[20] Li J, Li R, Liu Y, et al. Sensors, 2022, 22(15): 5729. doi: 10.3390/s22155729.
[21] Bechtel J H. Applied Optics, 1979, 18(13): 2100.
[22] Cattolica R. Applied Optics, 1981, 20(7): 1156.
[23] Anderson W R, Decker L J, Kotlar A J. Combustion and Flame, 1982, 48(2): 163.
[24] Seitzman J M, Hanson R K. Applied Physics B: Photophysics and Laser Chemistry, 1993, 57(6): 385.
[25] Chrystie R S M, Burns I S, Kaminski C F. Combustion Science and Technology, 2013, 185(1): 180.
[26] Ayoola B, Hartung G, Armitage C A, et al. Experiments in Fluids, 2009, 46(1): 27.
[27] Arndt C M, Severin M, Dem C, et al. Experiments in Fluids, 2015, 56(4): 69.
[28] Meier W, Dem C, Arndt C M. Experimental Thermal and Fluid Science, 2016, 73: 71.
[29] Cho J H, Lieuwen T. Combustion and Flame, 2005, 140(1-2): 116.
[30] Feng S, Qiu X, Guo G, et al. Analytical Chemistry, 2021, 93(10): 4552.
[31] Lee J G, Kim K, Santavicca D A. Proceedings of the Combustion Institute, 2000, 28(1): 415.
[32] Blümner R, Paschereit C O, Oberleithner K, et al. Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, 2016, 4A: UNSP V04AT04032.
[33] Stöhr M, Yin Z, Meier W. Proceedings of the Combustion Institute, 2017, 36(3): 3907.
[34] Wang X H, Guo G Q, Qiu X B, et al. Microwave and Optical Technology Letters, 2023, 65(5): 1229.
[35] Liu Y, Shi Z, Chen C, et al. Experimental Thermal and Fluid Science, 2022, 136: 110652.
[36] Zimmer L, Tachibana S. Proceedings of the Combustion Institute, 2007, 31(1): 737.
[37] Tachibana S, Kanai K, Yoshida S, et al. Proceedings of the Combustion Institute, 2015, 35(3): 3299.
[38] Huang R F, Jufar S R, Hsu C M. Experiments in Fluids, 2013, 54(1): 1421.
[39] Loretero M E, Huang R F. Journal of Mechanics, 2010, 26(3): 279.
[40] Hjelmfelt A T, Mockros L F. Applied Scientific Research, 1966, 16(2): 149.
[41] Liu T, Li J, Zhu S, et al. Applied Thermal Engineering, 2022, 206: 118084.
[42] Gao Q, Wang H, Shen G. Chinese Science Bulletin, 2013, 58(36): 4541.
[43] Liu T S, Merat A, Makhmalbaf M H M, et al. Experiments in Fluids, 2015, 56(8): 166.
[44] Kitzhofer J, Brücker C. Experiments in Fluids, 2010, 49(6): 1307.
[45] Meng H, Pan G, Pu Y, et al. Measurement Science and Technology, 2004, 15(4): 673.
[46] Shi S, Ding J, New T H, et al. Experiments in Fluids, 2017, 58(7): 78.
[47] Gao Q, Wang H, Wang J. Science China-Technological Sciences, 2012, 55(9): 2501.
[48] Nie M, Pan C, Wang J, et al. Experiments in Fluids, 2021, 62(4): 68.
[49] Nie M, Pan C, Xu Y, et al. Experiments in Fluids, 2022, 63(9): 148.
[50] O'Connor J, Lieuwen T. Combustion Science and Technology, 2011, 183(5): 427.
[51] Lawn C J, Williams T C, Schefer R W. Proceedings of the Combustion Institute, 2005, 30(2): 1749.
[52] Weilenmann M, Xiong Y, Bothien M, et al. Journal of Engineering for Gas Turbines and Power, 2019, 141(1): 011030.
[53] Kather V, Lückoff F O, Paschereit C, et al. International Journal of Spray and Combustion Dynamics, 2021, 13(1-2): 72.
[54] Wang G, Liu X, Wang S, et al. Combustion and Flame, 2019, 204: 85.
[55] Sadanandan R, Stöhr M, Meier W. Applied Physics B, 2008, 90(3-4): 609.