摘要: 簇状规则间隔短回文重复序列(CRISPR and CRISPR-associated system,CRISPR-Cas系统)是在大多数细菌和古菌中发现的一种获得性免疫系统,由Cas酶和引导RNA (guide RNA,gRNA)组成,根据gRNA序列的特异性识别并剪切靶标DNA或RNA。近年来,得益于CRISPR-Cas系统优异的酶切活性,建立了多种生物传感技术(biosensor),光学信号传感策略简单、便携,广泛应用于科学研究和实际应用中。详细总结了近五年来基于CRISPR-Cas系统的各种光学传感策略的基本原理以及代表性成果和应用。同时,也对当前的应用前景和挑战进行展望。
关键词:簇状规则间隔短回文重复序列;信号读出;光学传感
Abstract:The clustered regularly interspaced short palindromic repeats (CRISPR and CRISPR-associated system, CRISPR-Cas system) is an acquired immune system found in most bacteria and archaea, consisting of Cas enzyme and guide RNA (guide RNA, gRNA), which recognizes and shears target DNA or RNA based on the specificity of gRNA sequence. In recent years, thanks to the excellent enzymatic activity of the CRISPR-Cas system, a variety of biosensing technologies (biosensor) have been established, and optical signal sensing strategies are simple, portable, and widely used in scientific research and practical applications. We summarized in detail the basic principles and representative results and applications of various optical sensing strategies based on the CRISPR-Cas system in the last five years. Also, we provide an outlook on the current application prospects and challenges.
Key words:CRISPR/Cas; Signal read-out; Optical signal readout
[1] Singh D, Mallon J, Poddar A, et al. P. Natl. Acad. Sci., 2018, 115(21): 5444.
[2] Wu H, Chen X, Zhang M, et al. TrAC-Trend Anal. Chem., 2021, 135: 116150.
[3] Li Y, Li S, Wang J, et al. Trends Biotechnol, 2019, 37(7): 730.
[4] Jiang Fuguo, Jennifer A D. Annu. Rev. Biophys., 2017, 46: 505.
[5] Chen J S, Ma E, Harrington L B, et al. Science, 2018, 360(6387): 436.
[6] Liu T Y, Knott G J, Smock D C J, et al. Nat. Chem. Biol., 2021, 17(9): 982.
[7] Li Shiyuan, Liu Jiakun. Cell Res., 2018, 28(4): 491.
[8] Li Shiyuan, Wang Jingman, Li Xiaoyan, et al. Cell Discov., 2018, 5: 17.
[9] Gootenberg J S, Abudayyeh O O, Kellner M J, et al. Science, 2018, 360(6387): 439.
[10] Savage D F. Biochemistry, 2019, 58(8): 1024.
[11] Aquino-Jarquin G. Nanomed-Nanotechnol, 2019, 18: 428.
[12] Harrington L B, Burstein D, Chen J S, et al. Science, 2018, 362(6416): 839.
[13] Smith C W, Nandu N, Kachwala M J, et al. Biochemistry, 2020, 59(15): 1474.
[14] Li Y, Li T, Liu B F, et al. Chem. Commun., 2020, 56(83): 12526.
[15] Li T, Hu R, Xia J, et al. Biosens Bioelectron, 2021, 187: 113292.
[16] Liu S T, Xie T, Huang Z H, et al. Sens. Actuators B: Chem., 2022, 373: 132746.
[17] Yuan Chaoqun, Sun Jian, Hu Menglu, et al. Anal. Chem., 2020, 92: 4029.
[18] Liu S T, Xie T, Pei X J, et al. Sensors and Actuators B: Chemical, 2023, 377: 133009.
[19] Jonathan S Gootenberg O O A, Max J Kellner, Julia Joung, et al. Science, 2018, 360: 439.
[20] Sun X, Wang Y, Zhang L, et al. Anal. Chem., 2020, 92(4): 3032.
[21] Huang M, Zhou X, Wang H, et al. Anal. Chem., 2018, 9(3): 2193.
[22] Yuan L, Lin W, Zheng K, et al. ACC Chem. Res., 2013, 46(7): 1462.
[23] Roy R, Hohng S, Ha T. Nat. Methods, 2008, 5(6): 507.
[24] Mao S Q, Ying Y C, Wu X T, et al. Nucleic Acids Res., 2019, 47(20): e131.
[25] Broughton J P, Deng X, Yu G, et al. Nat. Biotechnol., 2020, 38(7): 870.
[26] Li S Y, Cheng Q X, Wang J M, et al. Cell Discov., 2018, 4: 20.
[27] Christopher W, Mahera J Kachwala, Chen Yusheng, et al. Biochemistry, 2020, 59: 1474.
[28] Li Ying, Liu Bifeng, Hu Rui, et al. Chem. Comm., 2020, 56: 12526.
[29] Joon Soo Park, Liben Chen, Aniruddha Kaushik, et al. Adv. Sci., 2020, 8: 2003564.
[30] Ding X, Yin K, Li Z, et al. Biosens Bioelectron, 2021, 184: 113218.
[31] Ackerman C M, Myhrvold C, Thakku S G, et al. Nature, 2020, 582(7811): 277.
[32] Bartolomeo Della Ventura, Antonio Minopoli, Raffaele Campanile, et al. ACS Sens, 2020, 5: 3043.
[33] Jin-Ha Choi, Minkyu Shin, Se-Hwan Paek, et al. Nano Lett., 2021, 21: 693.
[34] Huang Di, Shi Zhuwei, Zhao Jiarun, et al. ACS Synth. Biol., 2020, 9: 3114.
[35] Patchsung M, Jantarug K, Pattama A, et al. Nat. Biomed. Eng., 2020, 4(12): 1140.
[36] Yuan T, Mukama O, Li Z, et al. Analyst, 2020, 145(19): 6388.
[37] Kaminski M M, Alcantar M A, Lape I T, et al. Nat. Biomed. Eng., 2020, 4(6): 601.
[38] Mukama O, Wu J, Li Z, et al. Biosens Bioelectron, 2020, 159: 112143.
[39] James P Broughton, Yu Guixia, Clare L Fasching, et al. Nat. Biotechnol., 2020, 38: 870.
[40] Huang Chao, Shi Fengjuan, Zeng Xiaoyan, et al. ACS Omega, 2020, 5: 12550.
[41] Swank Z, Michielin G, Yip H M, et al. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(18): e2025289118.
[42] Xie Z H, Feng S S, Pei F B, et al. Analytica Chimica Acta, 2022, 1233: 340486.
[43] Koller G, Morrell A P, Galao R P, et al. Acs Applied Materials & Interfaces, 2021, 13(22): 25694.
[44] Wang Zhizeng, Hu Hangzhan, Zhou Qianwen, et al. Lab. Chip., 2020, 20: 4255.
[45] Gootenberg J S, Abudayyeh O O, Lee J W, et al. Science, 2017, 356(6336): 438.
[46] Ning Bo, Zhang Shengwei, Huang Zhen, et al. Sci. Adv., 2021, 7(2): 3703.
[47] Aubin Samacoits P N, Oraphan Mayuramart, Naphat Chantaravisoot, et al. ACS Omega, 2021, 6: 2727.
[48] Kachwala M J, Smith C W, Nandu N, et al. Anal. Chem., 2021, 93(4): 1934.