The Fluorescence Detection of Oil Pollutants Based on Self-Weighted Alternating Trilinear Decomposition
CHENG Peng-fei1,2, WANG Yu-tian1, CHEN Zhi-kun2, YANG Zhe1*, CAO Li-fang1
1. Measurement Technology and Instrument Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China 2. Electrical Engineering College, North China University of Science and Technology, Tangshan 063009, China
Abstract:The oil pollutants detector is designed in this paper. The pulse xenon lamp is used as light source; the step type multi-mode pure silica fiber is chosen to transmit the excitation and emission light. The asymmetric Czemy-Turner light path of high precision grating monochromator is adopted. The detector is applied to determine the fluorescence spectrum of diesel, gasoline and kerosene. The optimal excitation /emission wavelengths are: 290/330 nm (diesel),270/300 nm (gasoline) and 280/330 nm (kerosene). The detection limits are: diesel (0.025 mg·L-1), gasoline (0.042 mg·L-1) and kerosene(0.054 mg·L-1). The relative errors are: diesel(2.55%), gasoline(2.06%) and kerosene(1.71%). Experiment results show that the designed detector has high accuracy of measurement. The different concentration of diesel, gasoline and kerosene mixed solution is configured, and three dimensional fluorescence spectra being measured. The self-weighted alternating trilinear decomposition is adopted to decompose the spectrum data. The predicted concentration and recovery rate show that self-weighted alternating trilinear decomposition has high resolution for mixed oil substance.
程朋飞1,2,王玉田1,陈至坤2,杨 哲1*,曹丽芳1 . 基于自加权交替三线性分解的荧光检测油类污染物 [J]. 光谱学与光谱分析, 2016, 36(07): 2162-2168.
CHENG Peng-fei1,2, WANG Yu-tian1, CHEN Zhi-kun2, YANG Zhe1*, CAO Li-fang1 . The Fluorescence Detection of Oil Pollutants Based on Self-Weighted Alternating Trilinear Decomposition. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(07): 2162-2168.
[1] Cohen M A. Encyclopedia of Energy, Natural Resource, and Environmental Economics, 2013, (3): 121. [2] Peiris R H, Jaklewicz M, Budman H, et al. Water Research, 2013, 47(10): 3364. [3] Patra D. Sensors and Actuators B: Chemical, 2008, 129(2): 632. [4] Kavanagh R J, Burnison K B, Frank R A. Chemosphere, 2009, 76(1): 120. [5] Zhu Bingqi, Stephen A Pennell, David K Ryan. Microchemical Journal, 2014, (115): 51. [6] Hadi Parastar, Nadia Akvan. Analytica Chimica Acta, 2014, (816): 18. [7] Guo Weidong, Xu Jing, Wang Jiangping, et al. Journal of Environmental Sciences, 2010, 22(11): 1728. [8] Zhang Yunlin, Yin Yan, Feng Longqing, et al. Water Research, 2011, (45): 5110. [9] YANG Li-li, WANG Yu-tian, LU Xin-qiong(杨丽丽,王玉田,鲁信琼). Chinese Journal of Laser(中国激光), 2013, 40(6): 0615002. [10] WU Xi-jun, PAN Zhao, ZHAO Yan-peng, et al(吴希军,潘 钊,赵彦鹏,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2014, 34(8): 137. [11] ZHOU Qian-qian, SU Rong-guo, BAI Ying(周倩倩,苏荣国,白 莹). Environmental Science(环境科学), 2015, 36(1): 163. [12] LI Lin-jun, DU Shu-xin(李林军,杜树新). Chinese Journal of Analysis Laboratory(分析试验室), 2012, 31(10): 40. [13] Zhang Shurong, Wu Hailong, Yu Ruqin. Journal of Chemometrics, 2015, 29: 179. [14] PENG Ming-guo, DU Er-deng, SONG Cheng-jie, et al(彭明国,杜尔登,宋澄杰). Chinese Water & Wastewater(中国给水排水),2013, 29(23): 32. [15] Li Yong, Wu Hailong, Qing Xiangdong, et al. Chemometrics and Intelligent Laboratory Systems, 2013, (127): 177. [16] YANG Li, LIU De-long, WEI Yong-ju(杨 莉,刘德龙,魏永巨). Chinese Journal of Analysis Laboratory(分析试验室), 2015, 34(1): 22. [17] TANG Yuan-he, LIU Qing-song, MENG Lei, et al(唐远河,刘青松,蒙 磊,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2015, 35(2): 424.