White Organic Light-Emitting Diodes Applied for Lighting Technology
HUANG Qing-yu1,2, ZHAO Su-ling1,2*, XU Zheng1,2, FAN Xing1,2, WANG Jian1,2, YANG Qian-qian1,2
1. Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education,Beijing 100044,China 2. Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044,China
Abstract:Lighting accounts for approximately 22 percent of the electricity consumed in buildings in the United States, with 40 percent of that amount consumed by inefficient incandescent lamps. This has generated increased interest in the use of white electroluminescent organic light-emitting devices(WOLEDS)as the next generation solid-state lighting source, owing to their potential for significantly improved efficiency over incandescent sources, combined with low-cost, high-throughput manufacturability. The research and application of the devices have witnessed great progress. WOLEDS have incomparable advantages for its special characteristics. This progress report sketched the principle of WOLEDS and provided some common structures, and further investigation of the mechanism of different structures was made. Meanwhile, the key technologies of WOLEDS were summarized. Finally, the latest research progress of WOLEDS was reviewed.
Key words:White organic light-emitting diodes (WOLEDs);Solid state lighting;Efficiency;Lifetime
[1] D’Andrade B W, Esler J, Lin C, et al. Proc. SPIE, F, 2008. [2] Reineke S, Lindner F, Schwartz G, et al. Nature, 2009, 459(7244): 234. [3] Kalyani N T, Dhoble S J. Renew. Sust. Energ. Rev., 2012, 16(5): 2696. [4] Ju G, Hu Y, Chen L, et al. Optics & Laser Technology, 2012, 44(1): 39. [5] Humphreys C J. MRS Bull, 2008, 33(04): 459. [6] Jang C K, Jaung J Y. Mol. Cryst. Liq. Cryst., 2012, 563: 238. [7] Seo J H, Lee S J, Seo B M, et al. Org. Electron., 2010, 11(11): 1759. [8] D'Andrade B W, Forrest S R. Adv. Mater., 2004, 16(18): 1585 [9] Ho M H, Hsu S F, Ma J W, et al. Appl. Phys. Lett., 2007, 91(11): 113513. [10] Kim T H, Wang W, Li Q. Frontiers of Chemical Science and Engineering, 2012. 1. [11] Baek H I, Lee C. J. Appl. Phys., 2008, 103(12): 124504. [12] Tokito S, Iijima T, Tsuzuki T, et al. Appl. Phys. Lett., 2003, 83(12): 2459. [13] Zhou G, Ho C L, Wong W Y, et al. Adv. Funct. Mater., 2008, 18(3): 499. [14] D’Andrade B W, Brooks J, Adamovich V, et al. Adv. Mater., 2002, 14(15): 1032. [15] Williams E L, Haavisto K, Li J, et al. Adv. Mater., 2007, 19(2): 197. [16] Jiang J, Xu Y, Yang W, et al. Adv. Mater., 2006, 18(13): 1769. [17] Ho C L, Wong W Y, Gao Z Q, et al. Adv. Funct. Mater., 2008, 18(2): 319. [18] Kim C H, Shinar J. Appl. Phys. Lett., 2002, 80(12): 2201. [19] D'Andrade B W, Holmes R J, Forrest S R. Adv. Mater., 2004, 16(7): 624. [20] Lan Y H, Hsiao C H, Lee P Y, et al. Org. Electron., 2011, 12(5): 756. [21] Farinola G M, Ragni R. Chemical Society Reviews, 2011, 40(7): 3467. [22] Kido J, Hongawa K, Okuyama K, et al. Appl. Phys. Lett., 1994, 64(7): 815. [23] Hu B, Karasz F E. J. Appl. Phys., 2003, 93(4): 1995. [24] Wang Q, Ma D. Chemical Society Reviews, 2010, 39(7): 2387. [25] Schwartz G, Reineke S, Rosenow T C, et al. Adv. Funct. Mater., 2009, 19(9): 1319. [26] Yang X, Wang Z, Madakuni S, et al. Appl. Phys. Lett., 2008, 93(19): 19193303. [27] Schwartz G, Reineke S, Walzer K, et al. Appl. Phys. Lett., 2008, 92(5): 053311. [28] Forrest S R, Bradley D D C, Thompson M E. Adv. Mater, 2003, 15(13): 1043. [29] So F, Kido J, Burrows P. MRS Bulletin, 2008, 33(07): 663. [30] Laquai F, Park Y S, Kim J J, et al. Macromol Rapid Comm., 2009, 30(14): 1203. [31] Zhou X, Pfeiffer M, Blochwitz J, et al. Appl. Phys. Lett., 2001, 78: 410. [32] Hong K, Lee J L. Electronic Materials Letters, 2011, 7(2): 77. [33] Choi M R, Woo S H, Han T H, et al. Chem. Sus. Chem., 2011, 4(3): 363. [34] Choulis S A, Choong V E, Patwardhan A, et al. Adv. Funct. Mater., 2006, 16(8): 1075. [35] Kim S Y, Lee J L. Org. Electron., 2008, 9(5): 678. [36] Lee Y J, Kim S H, Huh J, et al. Appl. Phys. Lett., 2003, 82(21): 3779. [37] Smith L H, Wasey J A E, Samuel I D W, et al. Adv. Funct. Mater., 2005, 15(11): 1839. [38] Moller S, Forrest S. J. Appl. Phys., 2002, 91(5): 3324. [39] Sun Y, Forrest S R. Nat. Photonics, 2008, 2(8): 483. [40] Slootsky M, Forrest S R. Appl. Phys. Lett., 2009, 94(16): 163302. [41] Krummacher B C, Nowy S, Frischeisen J, et al. Org. Electron., 2009, 10(3): 478. [42] Eom S H, Zheng Y, Wrzesniewski E, et al. Org. Electron., 2009, 10(4): 686. [43] Mandlik P, Han L, Wagner S, et al. Appl. Phys. Lett., 2008, 93(20): 203303. [44] Levermore P, Adamovich V, Rajan K, et al. Highly Efficient Phosphorescent OLED Lighting Panels for Solid State Lighting; Proceedings of the SID, F, 2010. [45] Hatwar T K, Spindler J P, Kondakova M, et al. 52.2: Hybrid Tandem White OLEDs with High Efficiency and Long Life Time for AMOLED Displays and Solid State Lighting; Proceedings of the SID Symposium Digest of Technical Papers, F, 2012. Wiley Online Library. [46] Lee M W, Song O K, Koo Y M, et al. P 147: Asymmetric High Performance Hybrid Tandem White OLEDs for Lighting Applications; Proceedings of the SID Symposium Digest of Technical Papers, F, 2012. Wiley Online Library. [47] Komoda T, Tsuji H, Ito N, et al. High-quality white OLEDs and Resource saving Fabrication Processes for Lighting Application; Proceedings of the SID, F, 2010. [48] Lee M T, Lin J S, Chu M T, et al. P 154: High Efficiency White Phosphorescent OLED with Host Free Yellow Emitter; Proceedings of the SID Symposium Digest of Technical Papers, F, 2012. Wiley Online Library. [49] Kawamura M, Kawamura Y, Mizuki Y, et al. Highly Efficient Fluorescent Blue OLEDs with Efficiency-Enhancement Layer; Proceedings of the SID, F, 2010.