|
|
|
|
|
|
Time-Resolved Raman Scattering Measurement Based on SiPM and TCMPC Method |
MIAO Quan-long1, DAI Lei1, LI Bai-cheng1, ZHAO Tian-qi1, LIANG Kun1, 2, YANG Ru1, 2, HAN De-jun1,2* |
1. College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
2. Beijing Radiation Center, Beijing 100875, China |
|
|
Abstract This paper reports a time-correlated multi-photon counting (TCMPC) technique based on SiPM and its application to time-resolved Raman scattering measurements. Compared with conventional time-correlated single photon counting (TCSPC) technique by using photomultiplier (PMT) or single photon avalanche diode (SPAD) as photon detector, SiPM can distinguish the specific photon-number of the signal pulse, the TCMPC technique based on SiPM eliminates the limitation of the number of photons contained in signal pulse, which must be less than or equal to 1, leading to an increment of the photon counting efficiency by more than 10 times, and greatly reduces the measurement time. In addition, the instrument response function (IRF) of the time-resolved Raman scattering system is enhanced from 81.4 ps for single-photon to 59.7 ps for two-photon detection due to higher time resolution for multi-photon counting than single-photon counting measurement. As a result, it is possible to use a narrower measuring time span to suppress the fluorescence background, a kind of noise that usually occurs in conventional Raman spectroscopy. The TCMPC technique is used to measure the peak-to-background ratio of Raman spectroscopy of CCl4 with different photon numbers of 0.5 p.e. and 1.5 p.e., because the later has a higher photo-electron threshold number that can further reduce the effect of SiPM dark counting and increase the signal-to-noise ratio of Raman spectroscopy, the measured peak-to-background ratio of CCl4 459 cm-1 Raman peak has increased 6.4 times compared with the former. The TCMPC based on Raman scattering measurement technique is compared with the conventional one based on photomultiplier tube (PMT) and lock-in amplifier (LIA). As the timing gate of only several tens of picoseconds is utilized, effective suppression of fluorescence, ambient stray light, dark counting of SiPM and other noise effects have been demonstrated, leading to a better peak-to-background ratio for Raman spectroscopy. The peak-to-background ratios of CCl4 459 cm-1 Raman peak and Si 1st Raman peak, measured by the TCMPC based on Raman spectrometer are 3.9 times and 5.5 times as high as the values obtained by the one based on PMT and LIA, respectively.
|
Received: 2017-06-08
Accepted: 2017-11-19
|
|
Corresponding Authors:
HAN De-jun
E-mail: djhan@bnu.edu.cn
|
|
[1] Renker D, Lorenz E. Journal of Instrumentation, 2009, 4, 04004.
[2] Becker W. Journal of Microscopy, 2006, 222(1): 65.
[3] Morris M D, Matousek P, Towrie M, et al. J. Biomed. Opt., 2005, 10: 14014.
[4] Li B C, Miao Q L, Wang B C, et al. Proc. SPIE, 2016, 9850: 98580L.
[5] Gruber L, Brunner S E, Marton J, et al. Nuclear Instruments & Methods in Physics Research A, 2014, 737: 11.
[6] Max L A. OALib Journal, 2015, 1507: 00863.
[7] Fabio A, Alessandro F, Alberto G, et al. Nuclear Instruments & Methods in Physics Research A, 2015, 784: 34.
[8] Marinov O, Deen J, Tejada J A, et al. Journal of Applied Physics, 2007, 101: 064515.
[9] Gamal A, Paul B, Johann M, et al. Nuclear Instruments & Methods in Physics Research A, 2011, 652: 528.
[10] Gundacker S, Auffray E, Vara N D, et al. Nuclear Instruments & Methods in Physics Research A, 2013, 718: 569.
[11] Sinfield J V, Colic O, Fagerman D, et al. Applied Spectroscopy, 2010, 64: 201. |
[1] |
HU Wen-bin1, MA Zhi-min1*, TIAN Meng1, ZHAO Xiao-hong1, HU Xiang-yang2. Multispectral-Based Particle Image Velocimetry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2038-2043. |
[2] |
SUN Yan-wen1, CHANG Yu2, JIN Yu-fen1, XIE Wen-bing2, CHANG Jing1, YU Ting1*, PAN Li-hua2. Study of Synthesis and Spectral Property of Europium Cryptate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2189-2193. |
[3] |
CHANG Meng-fang1, JIA Meng-hui2, LI Lei1, CHEN Jin-quan1, XU Jian-hua1*. Time-Resolved Fluorescence and Thermodynamic Properties of Staphylococcal Nuclease[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1451-1457. |
[4] |
CHEN Lin, DENG Guo-liang, FENG Guo-ying*, XUE Hong-yan, LI Jia-qi. Study on the Mechanism of Laser Paint Removal Based on LIBS and Time Resolved Characteristic Signal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 367-371. |
[5] |
ZHANG Xiao-he1, 2, MA Chao-qun1, 2*, CHEN Guo-qing1, 2, LIU Huai-bo1, 2, ZHU Chun1, 2, SONG Xin-shu1, 2, ZHU Cong-hai1, 2. The Fluorescnece Lifetime and Quantum Chemistry Calculation of Ethyl Caproate and Ethyl Acetate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 502-505. |
[6] |
HOU Guo-hui, CHEN Bing-ling, LUO Teng, LIU Jie, LIN Zi-yang, CHEN Dan-ni*, QU Jun-le*. Experimental Study on Broadband Coherent Anti-Stokes Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 606-610. |
[7] |
LIANG Shu-yan, LIU Hong-mei*, MU Yun-yun, ZHAI Tian-rui, ZHANG Xin-ping. Gold Nanocluster Assembled Nanoislands for Surface-Enhanced Raman Scattering Application[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(01): 87-92. |
[8] |
LI Yu, HUANG Xiao-ping*, WANG Ying, HOU Yu-meng, CHEN Tao, ZHANG Pei-feng, HUANG Qiu-ying, ZHAO Qing. Fabrication of Gold Nanoparticle Array Substrate by Chemical Replacement and Its Surface Enhanced Raman Scattering Properties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3725-3729. |
[9] |
FU Xiao-qi, ZHANG Guo-lin. Research Progress of Recyclable Surface Enhanced Raman Scattering Substrates[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(11): 3435-3440. |
[10] |
ZHANG Xiao-lei, ZHU Yong*, DING Yi-min, ZHANG Jie. TiO2/Graphene/Ag Composite Structure for Surface-Enhanced Raman Scattering[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(11): 3441-3445. |
[11] |
CHEN Shan-jun1, CHEN Yan1,LI Song1, WU Qing-feng1, YI You-gen2, WEI Jian-jun3. Adsorption Behavior of o-Hydroxybenzoic Acid in Gold Colloids: an Experimental and DFT Study[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(10): 3156-3159. |
[12] |
CUI Shao-li1, DU Xiao-qing1*, NIU Lian-bin1,2, ZENG Chao1, BAO Jun1, LI Lu1, CHEN Wei-min1. Surface Enhanced Raman Scattering Spectrum Study on Graphene Oxide and Water Soluble Copper Phthalocyanine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(09): 2763-2767. |
[13] |
XIAO Xue1, ZHAO Nan-jing1*, YU Shao-hui2, MA Ming-jun1, YANG Rui-fang1, YIN Gao-fang1, DUAN Jing-bo1, DONG Yun-sheng1, LIU Jian-guo1, LIU Wen-qing1. Characterization of Polycyclic Aromatic Hydrocarbons with Time-Resolved Fluorescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(06): 1793-1798. |
[14] |
YANG Cheng-hu1, LIU Yang-zhi1, ZHU Ya-xian2, ZHANG Yong1,3*. In Situ Investigation of the Interactions of Pyrene and Phenanthrene with Humic Acid Using Laser Induced Nanoseconds Time Resolved Fluorescence Quenching Method Combined with PARAFAC Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(05): 1519-1524. |
[15] |
YANG Jie1,2, LIU Jin-bo2*, CAO Rui1,2, CAI Hong-xing1, GUO Jing-wei2. Time-Sharing Narrowband CARS Spectroscopy in Olefin Concentration Measurement Applications[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(04): 1037-1041. |
|
|
|
|