|
|
|
|
|
|
Response Characteristics Analysis of Different Vegetation Indices to Leaf Area Index of Rice |
CHANG Hao-xue1, CAI Xiao-bin2, CHEN Xiao-ling1, 3*, SUN Kun1 |
1. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
2. Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei Province, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China
3. Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China |
|
|
Abstract Leaf area index (LAI), the most frequently used parameter for monitoring agricultural ecology, could be utilized to provide scientific basis for crop disease, growth and carbon cycle monitoring as well as yield estimation. Vegetation indices (VIs), which can be employed to indicate LAI, are important data sources for satellite-based LAI production. And the most widely used one is Normalized Difference Vegetation Index (NDVI). Several standard satellite LAI products such as MODIS use NDVI as an input. However, the saturation characteristics of NDVI would introduce errors in the production of LAI. To find a possible optimized VI to derive the LAI of rice, 28 sets of spectral observations and corresponding LAI data were collected in the sample fields of Jiangxi Province. Four commonly used VIs including NDVI, Enhanced Vegetation Index (EVI), Soil Adjusted Vegetation Index (SAVI) and Modified Soil-Adjusted Vegetation Index (MSAVI) were extracted based on the in suit rice spectra. The response performance of the ground-based VIs to concurrent LAI measurements was assessed in this study. The linear regression results showed that the other three VIs had better adaptability than NDVI (R2=0.38), while EVI had the best performance (R2=0.82). MSAVI (R2=0.744) and SAVI (R2=0.751 1) also showed a better performance than NDVI. To continue, the differences between the results of ground-based model and the lookup table of MODIS LAI backup algorithm were compared. The MODIS LAI backup algorithm was derived from the empirical relationship between NDVI and LAI based on eight coarse biomass types. For biomass 1, it contained cereal and grass, and rice belonged to this category. In this paper, the lookup table of biomass 1 based on MODIS LAI backup algorithm was validated using the in situ LAI and spectral observations. The mean predict error of the algorithm was more than 3.2; and mean relative tolerance was up to 530%. This means large error will be introduced in rice LAI monitoring of this area if we use MODIS LAI backup algorithm. The low accuracy of MODIS backup algorithm may be caused by the coarse biomass classification system. In fact, different vegetation types included in biomass 1 had very significant difference in their canopy characteristics. Mixing them all in one class would result in an unacceptable errors to the LAI inversion for a specified crop type such as rice. The different saturation ranges of NDVI to inverse the LAI were also considered. The NDVI values kept unchanged with the increase of LAI when LAI was greater than 4 in the MODIS backup algorithm. Nevertheless, for the regression based on the rice field measured LAI and spectral observations, the saturation domain of NDVI was reached when LAI was larger than 2. After that, the accuracy comparison of the four ground-based VI models was implemented using root mean square error. The results showed that the mean predict error for NDVI model was 1.019 and only 0.55 for EVI model, which was only 1/6 of MODIS backup algorithm and 1/2 of NDVI model. Compared with the other three VIs, an addition blue band was utilized in the calculation of EVI to attenuate the aerosol impact on red band. This may be one of the possible reasons to explain the better performance of EVI. Therefore, an algorithm based on EVI could be developed as an alternative approach to improve the accuracy of LAI inversion.
|
Received: 2017-01-08
Accepted: 2017-05-22
|
|
Corresponding Authors:
CHEN Xiao-ling
E-mail: xiaoling_chen@whu.edu.cn
|
|
[1] Li S H, Xiao J T, Ni P, et al. International Journal of Agricultural & Biological Engineering, 2014, 7(6): 28.
[2] ER Jun, ZHANG Hong-cheng, LU Jian-fei(佴 军, 张洪程, 陆建飞). Scientia Agricultura Sinica(中国农业科学), 2012, 45(16): 3446.
[3] LIU Yuan, ZHOU Mai-chun(刘 远,周买春). Jiangsu Agricultural Sciences(江苏农业科学),2017,45(12):12.
[4] ZHAO Hu, PEI Zhi-yuan, MA Shang-jie, et al(赵 虎, 裴志远, 马尚杰,等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2012, 28(10): 172.
[5] WANG Li-hui, DU Jun, HUANG Jin-liang, et al(王立辉, 杜 军, 黄进良,等). Journal of Central China Normal University·Natural Sciences(华中师范大学学报·自然科学版), 2016, 50(1): 120.
[6] FANG Xiu-qin, ZHANG Wan-chang, LIU San-chao(方秀琴, 张万昌, 刘三超). Remote Sensing for Land & Resources(国土资源遥感), 2004, 16(1): 27.
[7] Yang F, Sun J, Fang H, et al. International Journal of Applied Earth Observation & Geoinformation, 2012, 18(1): 462.
[8] LIU Yang, LIU Rong-gao, CHEN Jing-ming(刘 洋, 刘荣高, 陈镜明). Geo-Information Science(地球信息科学学报), 2013, 15(5): 734.
[9] Yan K, Park T, Yan G, et al. Remote Sensing, 2016, 8(5): 359.
[10] Huang J, Zhang F, Xue Y, et al. International Journal of Biometeorology, 2017, 61(4): 1.
[11] Rouse J W, Haas R H, Schell J A, et al. NASA Special Publications, 1974, 351: 309.
[12] Huete A R. Remote Sensing of Environment, 1988, 25(3): 295.
[13] Qi J, Chehbouni A, Huete A R, et al. Remote Sensing of Environment, 1994, 48(2): 119.
[14] Huete A, Justice C, Liu H, Remote Sensing of Environment, 1994, 49(3): 224.
[15] Schlerf M, Atzberger C, Hill J. Remote Sensing of Environment, 2005, 95(2): 177.
[16] Darvishzadeh R, Skidmore A. International Journal of Applied Earth Observation &Geoinformation, 2008, 10(3): 358.
[17] Darvishzadeh R, Atzberger C, Skidmore A K, et al. International Journal of Remote Sensing, 2009, 30(23): 6199.
[18] Curran P J. Neurological Research, 1983, 34(7): 649.
[19] Huete A, Didan K, Miura T, et al. Remote Sensing of Environment, 2002, 83(1-2): 195.
[20] LIU Liang-yun(刘良云). Principles and Applications of Quantitative Remote Sensing of Vegetation(植被定量遥感原理与应用). Beijing: Science Press(北京:科学出版社), 2014.
[21] Matsushita B, Wei Y, Jin C, et al. Sensors,2007, 7(11): 2636. |
[1] |
MAO Zhi-hui1, DENG Lei1*, SUN Jie1, ZHANG Ai-wu1, CHEN Xiang-yang2, ZHAO Yun1. Research on the Application of UAV Multispectral Remote Sensing in the Maize Chlorophyll Prediction[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(09): 2923-2931. |
[2] |
WANG Xin, WANG Zi-tong, YOU Wen-qiang, LU Fan, ZHAO Yun-sheng, LU Shan*. Estimation of Chlorophyll Content by Reflectance Spectra of the Positive and Negative Blades[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(08): 2524-2528. |
[3] |
HU Hua-ling1, 2, 3, LI Meng2, 3*, HE Xiao-song2, 3, XI Bei-dou2, 3, ZHANG Hui2, 3, LI Dan2, 3, HUANG Cai-hong2, 3, TAN Wen-bing2, 3. FTIR Spectral Characteristics of Rice Plant Growing in Mercury Contaminated Soil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2081-2085. |
[4] |
HUANG Min, HE Rui-li, SHI Chun-jie, SHI Bing-jie, LIU Hao-xue. Test the Performances of Different Color Matching Functions with the Method of Comparison[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2241-2249. |
[5] |
MA Yun-yun1, WANG Yong-qiang2, MIN Qi2, CAO Shi-quan2, ZHANG Zheng-rong1, SU Mao-gen2, SUN Dui-xiong2*, DONG Chen-zhong2. Relative Spectral Intensity Response Calibration of Spectrometers Using Ar Plasma Emission Branching Ratio Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1375-1379. |
[6] |
ZHAO Shuai-yang1, HU Xing-bang1, JING Xin2, JIANG Si-jia1, HE Li-qin1, MA Ai-nai1, YAN Lei1*. Analyses of Land Surface Emissivity Characteristics in Mid-Infrared Bands[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1393-1399. |
[7] |
LI Ying1, LI Yao-xiang1*, LI Wen-bin2, JIANG Li-chun3. Model Optimization of Wood Property and Quality Tracing Based on Wavelet Transform and NIR Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1384-1392. |
[8] |
MIAO Quan-long1, DAI Lei1, LI Bai-cheng1, ZHAO Tian-qi1, LIANG Kun1, 2, YANG Ru1, 2, HAN De-jun1,2*. Time-Resolved Raman Scattering Measurement Based on SiPM and TCMPC Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1444-1450. |
[9] |
ZHANG Ying-hua1, 2, 3, LI Ang1*, XIE Pin-hua1, XU Jin1,HU Zhao-kun1, WU Feng-cheng1,QIN Min1, FANG Wu1. An UV Imaging Methods Applicable to the Two-Dimensional Spatial Distribution of Pollutant Concentration[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1476-1480. |
[10] |
LI Zhe1, 2, ZHANG Fei1, 2, 3*, CHEN Li-hua4, ZHANG Hai-wei1, 2. Research on Spectrum Variance of Vegetation Leaves and Estimation Model for Leaf Chlorophyll Content Based on the Spectral Index[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1533-1539. |
[11] |
SUN Gui-fen1, QIN Xian-lin1*, YIN Ling-yu1, LIU Shu-chao1, LI Zeng-yuan1, CHEN Xiao-zhong2, ZHONG Xiang-qing2. Changes Analysis of Post-Fire Vegetation Spectrum and Index Based on Time Series GF-1 WFV Images[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 511-517. |
[12] |
YANG Bin1, GUO Hao-ran1, CHEN Xiao-long2, PAN Ke-wei2, GUI Xin-yang1, CAI Xiao-shu1, LIU Pei-jin3. Research on the Influence of Spectral Response on Radiation Spectroscopy Thermometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 638-642. |
[13] |
ZHANG Jian1, LI Yong1, XIE Jing2*, LI Zong-nan1. Research on Optimal Near-Infrared Band Selection of Chlorophyll (SPAD) 3D Distribution about Rice Plant[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3749-3757. |
[14] |
MA Shuang, HAN Yang*, HUANG Meng-xue, WANG Ying, WU Miao-miao, JIN Lun. Study on Information and Model of High Polarization Hyperspectral about Vegetation-Soil Mixed Pixels Based on Different Vegetation Indices[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(11): 3549-3556. |
[15] |
YANG Xing-chuan1, 2, 3, LUO Hong-xia3, ZHAO Wen-ji1, 2*, CHENG Yu-si3, WANG Hao-fei1, 2. Study on the Response Model of Spectral Signatures of Vegetation Leaves on the Stress Level for Sooty Mould[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(09): 2873-2878. |
|
|
|
|