|
|
|
|
|
|
New Development of Metal Nanostructures Enhanced Fluorescence |
WU Jiang-hong1,2, CHENG Pei-hong1*, ZHANG Chi3, WANG La1, ZHAO Hong-xia1, WANG Jing-rui1, DING Zhi-qun1, BAO Ji-long1 |
1. Department of Electrical Engineering, Ningbo University of Technology, Ningbo 315016, China
2. Department of Electrical Engineering, Zhejiang University, Hangzhou 310007, China
3. Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai 200135, China |
|
|
Abstract Surface plasmon (SP) is electron density oscillation wave that propagates at the metal-dielectric interface. When the oscillation frequency matches with the incident light frequency, surface plasmon resonance effects are induced. It leads to strong light extinction and field enhancement near the metal structures. SP resonance effect can be applied to SP imaging, SP waveguide, biology sensing and spectral enhancement. The research progress of metal nanostructure enhanced fluorescence was reviewed. Firstly, the mechanism of metal enhanced fluorescence and the factors influencing fluorescence enhancement were introduced. Then, the research progress in fluorescence enhancement using different metal structures was reviewed. Finally, some new applications of fluorescence enhancement such as food testing, environmental testing, imaging optics, optoelectronic devices, fluorescence upconversion were introduced.
|
Received: 2016-06-06
Accepted: 2017-01-12
|
|
Corresponding Authors:
CHENG Pei-hong
E-mail: peihongcheng@163.com
|
|
[1] Drexhage K H. In: Wolf E,ed. Progress in Optics. Amsterdam: North-Holland, 1974. 161.
[2] Turner E H, Lauterbach K, Pugsley H R,et al. Anal. Chem., 2007, 79: 778.
[3] Lü Hui, GUAN Cheng-gang, TAN Bao-hua(吕 辉, 官成钢, 谭保华,译). Nanotechnology for Photovoltaics(纳米光伏技术). Beijing: Publishing House of Electronics Industry(北京:电子工业出版社), 2014.
[4] Huang Q, Huang Z, Meng G,et al. Chem. Commun., 2013, 49: 11743.
[5] Abel B, Coskun S, Mohammed M. Journal of Physical Chemistry C Nanomaterials & Interfaces, 2015, 119:675.
[6] ZHENG Li, ZHU Jin, WU Fei, et al(郑 莉,朱 进,吴 飞,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2014, 34(6): 1477.
[7] Praveeen G, Lekha G, Visakh V,et al. J. Nanopart. Res., 2014, 16: 2217.
[8] Zhou J, Li J, Hong Y, et al. Transactions of Nonferrous Metals Society of China, 2013, 23: 456.
[9] Wu T F, Yang S B, Li X F. The Journal of Physical Chemistry C, 2013, 117:8397.
[10] Tang X L, Tsuji M, Jiang P. Colloids and Surf. A: Phys., Eng. Aspects, 2009, 338. 33
[11] XU Ling-ling(徐玲玲). High-Precision Fluorescence Lifetime Imaging Method and Its Applications(高精度荧光寿命成像方法及应用). Huazhong University of Science & Technology(华中科技大学), 2013.
[12] Goldys E,Barnett A,Xie F, et al. Applied Physics A, 2007, 89: 265.
[13] Abadeer N S, Brennan M R, Wilson W L,et al. ACS Nano, 2014, 8(8):8392.
[14] Zhao T, Yu K, Li L,et al. ACS Applied Materials & Interfaces, 2014, 6:2700.
[15] Khatua S, Pedro M R Paulo, Yuan Haifeng,et al. ACS Nano,2014, 8(5):4440.
[16] WANG Jing-jing, WU Ying, LIU Ying, et al(王静静, 吴 莹, 刘 莹,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2016, 36(1): 140.
[17] Mohammad Salman Khan, Vijay Raman Chaudhari. Journal of Fluorescence, 2014, 24:751.
[18] Jang E,Su M,Koh W. Analyst, 2015, 140:3375.
[19] Cheng Z H, Li G, Liu M. Sensors and Actuators B,2015, 212:495.
[20] Fujii M, Nakano T, Imakita K, et al. J. Phys. Chem., 2013, 117: 1113.
[21] Zhang H, Lin X,et al. Molecular and Biomolecular Spectroscopy, 2015, 151:716.
[22] YIN Yong-qi(尹永琦). Photoluminescence and Surface Enhanced Spectroscopy of Surface-Modified ZnO Nanorods(表面修饰ZnO纳米棒光致发光和表面增强光谱效应研究). Harbin Institute of Technolgy(哈尔滨工业大学), 2014.
[23] Saboktakin M, Ye X, Chettiar U,et al. ACS Nano, 2013, 7:7186.
[24] Lu D, Cho S, Ahn S,et al. ACS Nano,2014, 8(8):7780.
[25] Zemtsova G, Montgomery M, Levin M. PLoS One,2015, 10(1): 0116658.
[26] Chen H, Parimelalagan M, Lai Y L,et al. Journal of Molecular Diagnostics, 2015, 17(6):722.
[27] Soaresa S, Amarala J S, Beatriz M,et al. Meat Science, 2015, 94(1):115.
[28] Yadav R, Paria A, Mankame S,et al. Molecular & Cellular Probes, 2015, 29(6):442.
[29] ZHAO Jin-hui, YUAN Hai-chao, HONG Qian, et al(赵进辉, 袁海超, 洪 茜,等). Optics and Precision Engineering(光学精密工程), 2014, 22(11):2902.
[30] ZHAO Jin-hui, YUAN Hai-chao, HU Qi, et al(赵进辉, 袁海超, 胡 琪,等). Chinese Journal of Laser(中国激光), 2015, 42(2):0215002-1.
[31] Yang C, Wang Y, Marty J,et al. Biosensors & Bioelectronics, 2011, 26(5): 2724.
[32] Li L, Li B, Cheng D,et al. Food Chemistry, 2010, 122(3): 895.
[33] XIE Wen-ping, ZHU Xin-ping, ZHENG Guang-ming, et al(谢文平, 朱新平, 郑光明,等). Environmental Science(环境科学), 2014, 35(12):4644.
[34] QIN Hua-wei, LIU Ai-ying, GU Wei-li, et al(秦华伟, 刘爱英, 谷伟丽,等). Asian Journal of Ecotoxicology(生态毒理学报), 2015, 10(6):287.
[35] Mannes D, Benoit C, Heinzelmann D,et al. Archaeometry,2014,56(5):717.
[36] Wang S F, Zhu Y X, Shao Q,et al. Journal of Pharmaceutical and Biomedical Analysis, 2016, 117:255.
[37] Sonya E L Craig, James Wright, Andrew E Sloan,et al. World Neurosurgery, 2016, 90:154.
[38] Park J, Pahk K, Kim S,et al. Oncology Letters, 2015, 10(2):1131.
[39] Zhao Y S, Li C. Current Drug Metabolism, 2015, 16:807.
[40] Wang J L, Zhang G, Li Q,et al. Scientific Report, 2014.
[41] Ayala-Orozco C, Liu J G, Knight M W. Nano Letters, 2014, 14:2926.
[42] Wang P, Wang X, Wang L,et al. Science and Technology of Advanced Materials, 2015, 16:15.
[43] Liu J M, Chen J T, Yuan X P. Anal. Chem.,2013, 85:3238.
[44] Chandirasekar S, Chandirasekarn C, Sudhandiran G,et al. Colloids and Surfaces B: Biointerfaces, 2016, 143:472.
[45] LI Yao-jun, SHEN Hao, FENG Zong-yan, et al(李曜均, 沈 浩, 冯宗焱,等). Journal of South China Normal University(华南师范大学学报), 47(6):32.
[46] He X, Wang W, Li S,et al. ECS Solid State Letters, 2015, 4:10.
[47] Qiu H, Yang C, Shao W,et al. Nanomaterials, 2014, 4:55.
[48] Park W J, Lua D W, Ahna S M. Chem. Soc. Rev.,2015, 44:2940.
[49] Luu Q A, Hor A, Fisher J,et al. The Journal of Physical Chemistry C, 2014, 118:3251.
[50] Lee K T, Park J H, Kwon S J,et al. Nano Letters, 2015, 15:2491.
[51] Feng A L, Lin M, Tian L M,et al. RSC Adv., 2015, 5:76825.
[52] Fujii M, Nakano T, Imakita K,et al. J. Phys. Chem. C,2013, 117:1113. |
[1] |
LI Wen-chao1, WANG Ya-juan2, HE Jia-huan2, FENG Dan-dan2, LI Zhi-quan2*, TONG Kai2, GU Er-dan2. A Hybrid Plasmonic Waveguide for Nanolaser Applications[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(01): 15-20. |
[2] |
CHENG Long1, JIANG Yong-gang1, HUANG Li-qing2*, ZHANG Yu2, WU Ji2, SUN Hao1, LIU Qi1, WANG Jun3 . Optical Properties of Ag-Al Nanosphere Heterodimer [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(11): 3470-3475. |
[3] |
LIANG Ai-hui, SHANG Guang-yun, ZHANG Xing-hui, WEN Gui-qing, JIANG Zhi-liang* . A Facile Nanogold Surface Plasmon Resonance Absorption Method for CO Tracing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(08): 2576-2578. |
[4] |
SANG Xiao-zhou, ZHANG Da-wei* . Research on the SPR Properties of Copper Thin Film with Regulation of Titanium Dioxide [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(07): 2027-2030. |
[5] |
WANG Xian-hai1, ZHAO Xue-wei1, HONG Rui-jin1,2*, TAO Chun-xian1,2, ZHANG Da-wei1,2 . Study on the Structural, Optical an Surface Plasmon Characteristics of Mo-Doped ZnO Thin Film [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(07): 2022-2026. |
[6] |
LI Wen-chao2, MENG Xiao-yun1, PIAO Rui-qi1, ZHAO Jing-jing1, LI Zhi-quan1*, TONG Kai1, GU Er-dan1 . Brand-New Ge20Ga5Sb10S65 Prism Biosensor Based on Inverted SPR [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(02): 571-576. |
[7] |
WANG Jing-jing, WU Ying, LIU Ying*, CAI Ting-dong, SUN Song . Research on the Fluorescence Enhancement Effect of Silver Nanoparticles on the Cholesterol [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(01): 140-145. |
[8] |
FAN Cai-ling1,2, XIE Pu-hui1, CUI Shu-min1, YANG Li-na1, SUN Qing1, AI Zhi-lu2,3* . The Fluorescence Enhancement of Mercury Detected in Food Based on Rhodamine Derivatives [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(05): 1300-1305. |
[9] |
YE Ling-ling1, LI Ting-sheng1, LUO Yang-he1, 2, WEN Gui-qing1, LIANG Ai-hui1*, JIANG Zhi-liang1* . Determination of Trace Boron Based on Gold Nanorod Plasmonic Resonance Rayleigh Scattering Energy Transfer to the Coordinate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(05): 1309-1311. |
[10] |
FENG Xin-jie1, MAO Pei-ling1, CHEN Xiao-long1, LUO Yun-han1, 2*, PENG Shui-hua1, CHEN Chao-ying1, WANG Fang1, TANG Jie-yuan1, 2, YU Jian-hui1, 2, ZHANG Jun1, 2, LU Hui-hui1, 2, CHEN Zhe1, 2 . Design and Optimization of Surface Plasmon Resonance Sensor Based on Side Polished Single-Mode Fiber [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(05): 1419-1423. |
[11] |
CHEN Shu-wang1, WANG Jun-xing1, SHENG Wei-nan2, 3, LIU Jin2, 3, ZHANG Wen-bin2, ZHOU Peng2, 4* . Analysis of SPR Signal by Using Optimized Savitzky-Golay Filter [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(04): 1124-1128. |
[12] |
TU Long, WANG Wen-hui*, QIU Zhi-chang . Review of Extraordinary Optical Transmission: Theory and Application in Biochemical Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(03): 751-759. |
[13] |
ZHANG Yi-long1, LIU Le1, 2, GUO Jun1, ZHANG Peng-fei1, GUO Ji-hua1, MA Hui1, HE Yong-hong1* . Research on Symmetrical Optical Waveguide Based Surface Plasmon Resonance Sensing with Spectral Interrogation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(02): 289-292. |
[14] |
WANG Yue-hui1, XIONG Na-na2, ZHOU Ji3 . Fluorescence Enhancement Effect of Silver Nanoparticles with Different Surface Modifiers and Sizes [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(12): 3292-3296. |
[15] |
ZHENG Li, ZHU Jin, WU Fei, CONG Yan-bin, TAN Ke-jun* . Gold Nanoparticles-Based Localized Surface Plasmon Resonance Scattering Analysis Method for the Determination of Trace Amounts of Hg(Ⅱ)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(06): 1477-1481. |
|
|
|
|