|
|
|
|
|
|
An Allotype Double H-V Depolarizer for Hyperfine Spectrometer |
TANG Qian1, GUO Li-xin1*, ZHAO Bao-chang2 |
1. School of Physics and Optoelectronic Engineering,Xidian University, Xi’an 710071, China
2. Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, Xi’an 710119, China |
|
|
Abstract High precision atmospheric detection spectrometers are widely used, because the sunlight would be polarized while passing the atmosphere and that could reduce detecting precision of the devices. There are many efforts on removing this influence. An allotype double H-V(Horizontal-Vertical) depolarizer is proposed,and it is equipped on hyperfine spectrometer used for atmosphere detecting in UV. Because the birefringence structure of crystals could eliminate the polarization, they are always chosen for depolarizers. Essentially, the birefringence of depolarizer can induce depolarization and double-imaging at the same time. The difference between traditional structure and the allotype is the inequality of the wedge angles of two sub H-Vs. There are different double-imaging distances in the spectrum dimension and the spatial dimension. So the contradiction between high-depolarization and high-imaging quality could be resolved. This paper will describe the design and analyzed the result. Depolarization is better than 98.8% and distance of the double-imaging is just 8.7% in the spatial dimension.
|
Received: 2016-02-18
Accepted: 2016-06-29
|
|
Corresponding Authors:
GUO Li-xin
E-mail: lxguo@xidian.edu.cn
|
|
[1] GUO Hong, GU Xing-fa, XIE Dong-hai(郭 红,顾行发,谢东海). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2014, 34(7): 1873.
[2] Hansen J E, Travis L D. Space Science Reviews, 1974, 16(4): 527.
[3] Zhang Chunmin, Jian Xiaohua. Optics Letters, 2010, 35(3): 366.
[4] Mu Tingkui, Zhang Chunmin, Jia Chenling, et al. Opt. Express, 2012, 20:18194.
[5] Joerg Callies, Enrico Corpaccioli, Michael Eisinger. Proc. of SPIE, 2004, 5549: 60.
[6] Nol S, Bovensman H, Burrow J P. Proc. of SPIE, 1998, 3498: 94.
[7] Pawan K Bhartia, Pieternel F Levelt, Johanna Tamminen. Proc. of SPIE, 2006, 6408: 6408Y-1.
[8] Jérme Caron, Jean-Loup Bézy, Grégory Bazalgette. Polarization Scramblers in Earth Observing Spectrometers: Lessons Learned from Sentinel-4 and 5 Phases A/B1. ICSO 2012 (International Conference on Space Optics).
[9] Ma Ning, Steen G Hanson, Mitsuo Takeda. Journal of the Optical Society of America A, 2015, 32(12):2346.
[10] Marwa Raghe, Hatem Elrefaei, Diaa Khalil. Applied Optics, 2015, 54(30): 9017.
[11] Gabriel Biener, Avi Niv, Vladimir Kleiner. Optics Letters, 2003, 28(16):1400.
[12] Hao Wenyue, Wang Chunhua, Li Li. Proc. of SPIE, 2011, 8307:83071Y1.
[13] Rast M, Bezy J L, Bruzzi S. Int. J. Remote Sensing, 1999, 20: 1681.
[14] REN Shu-feng, WU Fu-quan, WU Wen-di(任树锋, 吴福全, 吴闻迪). Acta Optica Sinica(光学学报), 2013, 33(4): 0423001-1.
[15] CHEN Fang, XU Peng-mei(陈 芳, 徐彭梅). Acta Optica Sinica(光学学报), 2014, 34(4): 0422002-1.
[16] James P McGuire, Russell A Chipman. Opt. Eng., 1990, 29(12):1478.
[17] WANG Zhi-jiang, GU Pei-sen(王之江, 顾培森). Modern Optical Application Technical Manuals(现代光学应用技术手册上). Beijing: China Machine Press(北京: 机械工业出版社), 2010. 47.
[18] Moriaki Wakaki, Keiei Kudo Takehisa Shibuya. Physical Properties and Data of Optical Material(光学材料手册). Translated by ZHOU Hai-xian, CHENG Yun-fang(周海宪,程云芳,译). Beijing: Chemical Industry Press(北京: 化学工业出版社),2010. 301.
[19] Gottwald M, Bovensmann H, Lichtenberg G. SCIAMACHY (Monitoring the Changing Earth’s Atmosphere). Germany: Freiburger Graphische Betriebe, 2006. 57.
|
[1] |
LIU Ling1, YANG Ming-xing1, 2*, LU Ren1, Andy Shen1, HE Chong2. Study on EDXRF Method of Turquoise Composition[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1910-1916. |
[2] |
GAO Hao1, WANG Xiao1, SHANG Lin-wei1, ZHAO Yuan1, YIN Jian-hua1*, HUANG Bao-kun2*. Design and Application of Small NIR-Raman Spectrometer Based on Dichroic and Transmission Collimating[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1933-1937. |
[3] |
MA Yun-yun1, WANG Yong-qiang2, MIN Qi2, CAO Shi-quan2, ZHANG Zheng-rong1, SU Mao-gen2, SUN Dui-xiong2*, DONG Chen-zhong2. Relative Spectral Intensity Response Calibration of Spectrometers Using Ar Plasma Emission Branching Ratio Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1375-1379. |
[4] |
ZHANG Rui1,2, ZHU Ji-wei1, LIU Jian-li1,2, CUI Ji-cheng1, LI Xiao-tian1, Bayanheshig1. Study on the Laser-Induced Plasma Spectroscopy Based on the Echelle Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1605-1609. |
[5] |
YANG Xiu-da, ZHANG Ling*, XU Zong, ZHANG Peng-fei, CHEN Ying-jie, HUANG Juan, WU Zhen-wei,. In-situ Absolute Intensity Calibration of Fast-Response Extreme Ultraviolet Spectrometer on Experimental Advanced Superconducting Tokamak[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1262-1267. |
[6] |
ZOU Yao-pu1, 2, ZHANG Lei1, 2, HAN Chang-pei2*, LI Li-bing2. Study of High Accuracy Spectral Calibration of Fourier Transform Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1268-1275. |
[7] |
HONG Guang-lie1, ZHOU Yan-bo1,2, LIU Hao1, KONG Wei1, SHU Rong1,2*. Feasibility Study of Mars Rover’s Laser Induced Breakdown Spectroscopy Based Mie-Lidar Design[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 600-605. |
[8] |
YAN Zheng-zhou1,2,5, DENG Li-cai1, ZHANG Chun-guang1, LUO Chang-qing1, Grundahl F3, HU Zhong-wen4, JI Hang-xin4, WANG Jia-ning4, XU Ming-ming4, DAI Song-xing4, Andersen M F3, WANG Kun5, TIAN Jian-feng1. SONG-China Project High Resolution Spectrograph and High Precision Radial Velocity Measurements of Asteroseismology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 621-626. |
[9] |
YUAN Jing, SHEN Jia-lin*, LIU Jian-kun, ZHENG Rong-hua. Determination of Rare Earth Elements in Geological Samples by High-Energy Polarized Energy-Dispersive X-Ray Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 582-589. |
[10] |
XING Li-feng1,2, CHANG Liang1,2. Lithium Abundance of 17 Young Nearby Stars: High Resolution Spectrograph Observation with Lijiang 1.8 m Telescope[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3900-3903. |
[11] |
LIU Xiang-lei1,2, LIU Yang-yang1*, FANG Yu1, PEI Lin-lin1, Lü Qun-bo1. Optical Design of Large Relief Large Relative Apertureand High Resolution Modified Dyson Imaging Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3908-3912. |
[12] |
GAO Jian-hua1,2, LIANG Jing-qiu1, Lü Jin-guang1*, LIANG Zhong-zhu1, QIN Yu-xin1, WANG Wei-biao1. A Stepped Mirror Based Temporally and Spatially Modulated Imaging Fourier Transform Spectrometer: Principle and Data Processing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3932-3939. |
[13] |
ZHANG Li-guo, CHENG Jia-jia, NI Li-jun*, LUAN Shao-rong. Rapid Analysis of the Quality of Ginkgo Biloba Leaf Based on UV, Near Infrared and Multi-Source Composite Spectral Information[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(10): 3063-3069. |
[14] |
WANG Xin-qiang1,3, ZHANG Li-juan1,3, XIONG Wei2, ZHANG Wen-tao1,3, WANG Jie-jun1,3, YE Song1,3*. Study on Adaptive Baseline Correction of Spatial Heterodyne Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(09): 2933-2936. |
[15] |
DING Fan, ZENG Li-bo, WU Qiong-shui*. Automatic Regulating System Design for Fourier Infrared Spectrometer Beam Splitter[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(09): 2937-2942. |
|
|
|
|