|
|
|
|
|
|
X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) Analysis of Steel Slags in Different Treatment Process and Active Index Prediction Model |
CHEN Hua1, 2, LI Hui1, DONG Shuo2, GU Heng-xing1, 2, YANG Gang1, 2, XU De-long1 |
1. College of Materials and Mineral Resource,Xi’an University of Architecture and Technology,Xi’an 710055, China
2. MCC Baosteel Technology Services Co., Ltd., Shanghai 201999, China |
|
|
Abstract Steel slags in different treatment processes (such as layer pouring slag from converter, rotating furnace slag from converter, casting slag, desulfurized slag, layer pouring slag from electric furnace and rotating furnace slag from electric furnace) were set as the research objects. Research on steel slag’s chemical composition and phase composition was carried out by X-Ray diffraction (XRD) and X-Ray fluorescence (XRF). The relationship of chemical composition, phase composition and activity was fitted by steel slag activity index prediction model with back-propagation neural network. The results showed that steel slag treatment process is different, its chemical composition and phase composition are obviously different. Steel slag activity index prediction model is of good compliance, and the relative errors are 2.42% and -2.54%, which can fully reflect the mapping relationship between input layer and output layer.
|
Received: 2017-01-24
Accepted: 2017-04-10
|
|
|
[1] CHENG Fu-an(程福安). Journal of Xi’an University of Architecture & Technology·Natural Science Edition(西安建筑科技大学学报·自然科学版), 2009, 41(6): 871.
[2] Huang Y Z, Hao X W. Chemistry and Ecology, 2012, 28(1): 37.
[3] Taylor R, Richardson I G, Brydson R M D. Cement and Concrete Research, 2010, 40: 971.
[4] Nataliya V. Malyshkina, Fred L. Accident Analysis and Prevention,2009 (4): 54.
[5] YANG Duo(杨 铎). Journal of Dalian University(大连大学学报), 2014, 35(3): 19.
[6] HAN Min, WANG Ya-nan(韩 敏,王亚楠). Chinese Journal of Computers(计算机学报), 2010, 33(5): 841.
[7] SHANG Jian-li, ZHANG Hao, XIONG Lei, et al(尚建丽,张 浩,熊 磊,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2016, 36(8): 2430. |
[1] |
SHI Wen-qiang1, XU Xiu-ying1*, ZHANG Wei1, ZHANG Ping2, SUN Hai-tian1, 3, HU Jun1. Prediction Model of Soil Moisture Content in Northern Cold Region Based on Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1704-1710. |
[2] |
FAN Qing-jie, SONG Yan, LAI Shi-quan*, YUE Li, ZHU Ya-ming, ZHAO Xue-fei. XRD Structural Analysis of Raw Material Used as Coal-Based Needle Coke in the Coking Process[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1979-1984. |
[3] |
WANG Yi-ya1, WANG Yi-min1*, GAO Xin-hua2. The Evaluation of Literature and Its Metrological Statistics of X-Ray Fluorescence Spectrometry Analysis in China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1329-1338. |
[4] |
JIANG Xiao-yu1, 2, LI Fu-sheng2*, WANG Qing-ya1, 2, LUO Jie3, HAO Jun1, 2, XU Mu-qiang1, 2. Determination of Lead and Arsenic in Soil Samples by X Fluorescence Spectrum Combined With CARS Variables Screening Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1535-1540. |
[5] |
NI Zi-yue1, CHENG Da-wei2, LIU Ming-bo2, YUE Yuan-bo2, HU Xue-qiang2, CHEN Yu2, LI Xiao-jia1, 2*. The Detection of Mercury in Solutions After Thermal Desorption-
Enrichment by Energy Dispersive X-Ray Fluorescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1117-1121. |
[6] |
PAN Qiu-li1, SHAO Jin-fa1, LI Rong-wu2, CHENG Lin1*, WANG Rong1. Non-Destructive Analysis of Red and Green Porcelain in Qing Dynasty[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 732-736. |
[7] |
CUI Ming-fang1, ZHU Jian-hua2*, HU Rui1, CHEN Shang-qian3. Research on the Chemical Composition and Process Feature of Ancient Porcelain Produced in Dongmendu Kiln[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 726-731. |
[8] |
YANG Jiong1, 2, QIU Zhi-li1, 4*, SUN Bo3, GU Xian-zi5, ZHANG Yue-feng1, GAO Ming-kui3, BAI Dong-zhou1, CHEN Ming-jia1. Nondestructive Testing and Origin Traceability of Serpentine Jade From Dawenkou Culture Based on p-FTIR and p-XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 446-453. |
[9] |
NIU Teng1, 3, LU Jie1, 2*, YU Jia-xin4, WU Ying-da5, LONG Qian-qian3, YU Qiang3. Research on Inversion of Water Conservation Distribution of Forest Ecosystem in Alpine Mountain Based on Spectral Features[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 530-536. |
[10] |
JIANG Yan1, MAO Ling-lin3, WU Jun3, YANG Xi4, DAI Lu-lu1, YANG Ming-xing1, 2*. Scientific Analysis of Five Turquoise Beads Unearthed From Haochuan Cemetery in Suichang, Zhejiang[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 568-574. |
[11] |
WANG Xue-yuan1, 2, 3, HE Jian-feng1, 2, 3*, NIE Feng-jun2, YUAN Zhao-lin1, 2, 3, LIU Lin1, 2, 3. Decomposition of X-Ray Fluorescence Overlapping Peaks Based on Quantum Genetic Algorithm With Multi-Fitness Function[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 152-157. |
[12] |
LIU Ji-fu1, YANG Ming-xing1*, SU Yue1, LIU Yue2. Analysis of Material and Source of Archaic Jade From the Tomb of Marquis Yi of Zeng in Suizhou, Hubei Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 215-221. |
[13] |
JIA Wen-bao1, TANG Xin-ru1, ZHANG Xin-lei1, SHAO Jin-fa2, XIONG Gen-chao1, LING Yong-sheng1, HEI Dai-qian3, SHAN Qing1*. Study on Sample Preparation Method of Plant Powder Samples for Total Reflection X-Ray Fluorescence Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3815-3821. |
[14] |
PENG Ya1,2, LI Dong-ling2,3*, WAN Wei-hao1,2, ZHOU Qing-qing3,4, CAI Wen-yi1,2, LI Fu-lin1, LIU Qing-bin2,3, WANG Hai-zhou2,3. Analysis of Composition Distribution of New Cast-Forging FGH4096 Alloy Turbine Disk Based on Microbeam X-Ray Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3498-3505. |
[15] |
YUE Su-wei1, 2, YAN Xiao-xu1, 2*, LIN Jia-qi1, WANG Pei-lian1, 2, LIU Jun-feng3. Spectroscopic Characteristics and Coloring Mechanism of Brown Tourmaline Under Heating Treatment[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2524-2529. |
|
|
|
|