|
|
|
|
|
|
On-Line Determination of Chemical Oxygen Demand and Total Phosphorus in Water by Using Fenton Reagents via a Micro-Spectrometer |
XIE Ying-ke1,2,3, WEN Qun1,2*, WEN Zhi-yu1,2, MO Zhi-hong1,2, WEI Kang-lin1,2 |
1. Key Laboratory of Fundamental Science on Micro/Nano-Device and System Technology, Chongqing University, Chongqing 400044, China
2. Microsystem Research Center of Chongqing University, Chongqing 400044, China
3. Department of Optoelectronic Information, Chongqing University of Technology, Chongqing 400050, China |
|
|
Abstract This paper presents a system for on-line determination of chemical oxygen demand (COD) and total phosphorus (TP) in water by using Fenton reagents via a micro-spectrometer. The system uses Fenton reagents with ultrasonic-assisted to realize on-line digestion of organic compounds and organic phosphorus compounds in water samples under normal temperature and normal pressure, and uses a micro-spectrometer to realize multi-wavelength spectrophotometric detection. The results show that the system realize less measuring time, lower power consumption, simpler system structure and less secondary pollution. Moreover, the results show that the relative error is ≤10%, the limit of detection (LOD) are 2 mg·L-1 COD and 0.008 mg·L-1 TP, respectively, the sensitivities are 0.021 3 COD and 0.452 6 TP, respectively, and the precision is around 5.6% RSD at 15.0 mg·L-1 COD (n=7) and 5.8% RSD at 0.010 mg·L-1 TP (n=7). In addition, there are not significantly difference between the Chinese national standard analysis methods and the methods used in proposed system.
|
Received: 2015-04-03
Accepted: 2015-10-20
|
|
Corresponding Authors:
WEN Qun
E-mail: wen@enas.fraunhofer.de
|
|
[1] Altenburger R, Ait-Aissa S, Antczak P, et al. Science of the Total Environment, 2015, 512-513: 540.
[2] Liu S, Han C, Smith K, et al. Journal of Environmental Management, 2015, 154c: 13.
[3] Liu Xuemei, ZHANG hailiang. Spectroscopy and Spectral Analysis, 2014, 34(10):2804.
[4] Schoumans O F, Chardon W J, Bechmann M E, et al. Science of the Total Environment, 2014, s468-469(Complete): 1255.
[5] Chen B, Wu H, Li S F Y. Talanta, 2014, 120: 325.
[6] Almeida C A, Savio M, González P, et al. Microchemical Journal, 2013, 106(1): 351.
[7] National Environmental Protection Bureau. HJ/T399—2007. Beijing: China Environmental Science Press, 2007.
[8] National Environmental Protection Bureau. GB11914—89. Beijing: China Standard Press,1989.
[9] National Environmental Protection Bureau. GB11893—89. Beijing: China Standard Press,1989.
[10] Esteves L C R, Oliveira T R O, Souza E C, et al. Talanta, 2015, 135: 75.
[11] Azizi A, Moghaddam M R A, Maknoon R, et al. Process Safety & Environmental Protection, 2015, 95: 255.
[12] Tew K S, Leu M Y, Wang J T, et al. Marine Pollution Bulletin, 2014, 85(2): 641.
[13] Rather M A, Rather G M, Pandit S A, et al. Talanta, 2015, 131: 55.
[14] Lu Xutao, Li Jing, Lü Haifeng. Spectroscopy and Spectral Analysis, 2015, 35(3): 846.
[15] Dennison W C, Batiuk R A. Bioscience (United States), 1993, 432(2): 86. |
[1] |
CHEN Jing1, 2, 4, PENG Jiao-yu1, 2, BIAN Shao-ju1, 3, GAO Dan-dan1, 3, DONG Ya-ping1, 2*, LI Wu1, 3. Optimization of Determination of CO2-3 and HCO-3 in Boron-Containing Brine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2194-2199. |
[2] |
LI Yun1,2,3, ZHANG Ji1,2, LIU Fei4, XU Fu-rong3, WANG Yuan-zhong1,2*, ZHANG Jin-yu1,2,3*. Prediction of Total Polysaccharides Content in P. notoginseng Using FTIR Combined with SVR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1696-1701. |
[3] |
WU Xin1,2, LI Guang-lin1*, WEN Zhi-yu3. Study and Determination the Concentration of CNO-Ion of the QPQ with the Sequential Injection Spectrophotometric Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1824-1828. |
[4] |
CAO Xuan1, 2,ZHANG Shu-wei1, 2,CHU Dong-zhi1, 2,WU Ning1, 2,MA Hai-kuan1, 2,MA Ran1, 2. Development of Lab-on-Chip Spectrophotometric Silicate Sensor in situ Analysis of Seawater[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 895-900. |
[5] |
HE Qiu-ju1,2, WANG Li-qin1*, ZHANG Ya-xu1. Study of Mechanism of Aluminum Sizing Precipitant on Xuan Paper Based on Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 418-423. |
[6] |
CAO Xuan1,2, CHU Dong-zhi1,2, LIU Yan1,2*, MA Ran1,2, ZHANG Shu-wei1,2, WU Ning1,2, SHI Qian1,2, MA Hai-kuan1,2. An On-Line Microfluidic Analysis System for Seawater Chemical Oxygen Demand Using Ozone Chemiluminescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3698-3702. |
[7] |
ZHU Hong-qiu, GONG Juan, LI Yong-gang*, CHEN Jun-ming. A Spectrophotometric Detecting Method of Trace Cobalt under High Concentrated Zinc Solution[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3882-3888. |
[8] |
DUAN Yun-min1, WU Bin-bin1, WANG An-jing1, ZHANG Nai-dong1,2*, ZHENG Tong2. The Mechanism of Sunlight/Fenton in Treating Oilfield Wastewater[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(09): 2857-2860. |
[9] |
MAI Wei1, 2, ZHAO Xiao-ming1, 2, ZHANG Jian-fei1, 2*, XU Zhi-wei1, 2, LI Zheng1, 2. Multivariate Calibration of a UV-Vis Spectrophotometer Used for Online Measurements of Chemical Oxygen Demand in Dyeing Wastewater[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(07): 2105-2109. |
[10] |
GONG Hong-ling1, LIU Yan-hui2*, TANG Yan-lin2*, HU Lin2. Effects of Temperature on DNA Condensation Detected with Temperature-Changed Ultraviolet Spectrum Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(06): 1831-1837. |
[11] |
LIU Qian3, CHEN Wen-juan1,2, JING Bo1,2, ZHANG Jian1,2, YANG Meng-ying3, CHEN Wu3, YIN Xian-qing1,3*. Spectrum Analysis of Trace Hydrogen Peroxide in Electrochemical Process[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(05): 1656-1660. |
[12] |
LIU Si-xiang1, 2, FAN Wei-hua1, 2, GUO Hui1, ZHAO Hui1, JIN Qing-hui1, 2*. Application of Machine Learning in Determination of Nitrate Nitrogen Based on Ultraviolet Spectrophotometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(04): 1179-1182. |
[13] |
WU De-cao1, 2, WEI Biao1*, XIONG Shuang-fei1, FENG Peng1, TANG Ge1, TANG Yuan1, LIU Juan1, CHEN Wei3, QIU Yu2, CHEN Yuan-yuan2, YE Xin4. An Optimized Ultraviolet-Visible Spectrum Dual Optical Path Length Fusion Algorithm for Water Quality Monitoring[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(03): 799-805. |
[14] |
QUAN Chao-ming1, 2, 3, HU Yao-qiang1, 2, 3, LIU Hai-ning1, 2, LI Ming-zhen1, 2, YE Xiu-shen1, 2*, WU Zhi-jian1, 2* . Rapid Determination of Dodecylmorpholine in Aqueous Solutions with UV-Vis Spectrophotometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(02): 509-512. |
[15] |
YANG Rui-qin1, XING Zhuo1, ZHOU Hong2 . Spectrophotometric Determination of the Amount of Zinc on the Imprint Left on Hands by Zinc Coatings with 5-Br-PADAP as the Chromogenic Reagent[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(12): 4017-4020. |
|
|
|
|