光谱学与光谱分析 |
|
|
|
|
|
The Application of THz Spectroscopy and GA-BP in Methanol Concentration Detection |
TAN Hong-ying, ZHENG De-zhong, LI Xue, XU Zheng-xia |
Hebei Provincial Key Laboratory on Measurement Technology and Instrumentation, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China |
|
|
Abstract At ambient temperature and atmospheric pressure, making use of a photoconductive-antenna terahertz time-domain spectrograph and a self-designed air chamber, the terahertz time-domain spectroscopy (THz-TDS) technique test of methanol gas in the range of 0.1~3.0 THz shows that the methanol gas has no obvious absorption peaks in the range of 0.1~3.0 THz and has obvious absorption peaks in the range of 0.1~1.0 THz. In order to improve the determination accuracy of the concentration of the methanol gas, the author detected 15 groups of methanol gas with different concentrations on the basis of the relationship between the strengths of 15 characteristic absorption peaks of different locations and the concentration of the methanol gas, and obtained the difference curve of the of the characteristic absorption peaks. Based on the function approximation of BP neural network, the author optimized the initial weights and biases of the BP neural network by using the GA the genetic algorithm, which has higher rate of convergence to prevent from getting into local optimum easily, and constructed the mathematical model with the purpose of predicting the methanol gas concentration. The test results show that the neural network is applicable to predict methanol gas in the volume concentration range of 0.028 3~0.424 6 m3·L-1, the average relative standard deviation of the 2 sets of samples is 1.7%, the average recovery rate is 98%, the error precision of the neural network is 10-1, and correlation coefficient of the measured values and the predicted values is 0.996 77. The test basically achieved ideal predicted results. The research results obtained experimental data of methanol gas in the terahertz frequency band and found that the method of combining terahertz time-domain spectroscopy with GA-BP neural network can effectively detect the volume concentration of methanol gas, and provided a new method for the detection of concentration of methanol gas.
|
Received: 2015-09-08
Accepted: 2016-01-20
|
|
Corresponding Authors:
TAN Hong-ying
E-mail: sumeertree@163.com
|
|
[1] Pearson J C, Yu S, Drouin B J. Journal of Molecular Spectroscopy, 2012, 280(4): 119. [2] Laib J P, Mittleman D M. Journal of Infrared Millimeter & Terahertz Waves, 2010, 31(9): 1015. [3] Zhao Hui, Wang Gao, Ma Tiehua. Spectroscopy and Spectral Analysis, 2012, 32(4): 902. [4] Hou Dibo, Yue Feiheng, Kang Xusheng, et al. Spectroscopy and Spectral Analysis, 2012, 32(5): 1170. [5] Andersen J. Journal of Chemical Physics, 2014, 140(9): 1964. [6] Ohno K, Shimoaka T, Akai N, et al. Journal of Chemical Physics, 2008, 112: 7342. [7] Laurette S, Treizebre A, Bocquet B. 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Groningen, The Netherlands, 2010. 1964. [8] Gan Tingting, Zhang Yujun, Zhao Nanjing, et al. Spectroscopy and Spectral Analysis, 2015, 35(1). [9] Xiao Wei Li, Sung Jin Cho, Seok Tae Kim, Journal of Optics Communications, 2014, 315: 147. [10] Lei Meng, Li Ming, Wu Nan, et al. Spectroscopy and Spectral Analysis, 2013, 33(1): 65. [11] Atlas Khan, Jie Yang, Wei Wu. Journal of Neurocomputing, 2014,128:113. [12] Luo Yong, Chen Shu-wei, He Xiao-juan, et al. International Journal of Computational Intelligence Systems, 2013, 6(6): 1108. [13] Wang Jing, Jing Yuanshu, Huang Wenjiang, et al. Spectroscopy and Spectral Analysis, 2015, 35(6): 1649. [14] Duan Qianqian, Yang Genke, Pan Changchun, et al. The Scientific World Journal, 2014. [15] Ma Chunqian, Xu Xiangdong, Ding Lian, et al. Spectroscopy and Spectral Analysis, 2014, 34(4): 952. |
[1] |
CAO Yao-yao1, 2, 4, LI Xia1, BAI Jun-peng2, 4, XU Wei2, 4, NI Ying3*, DONG Chuang2, 4, ZHONG Hong-li5, LI Bin2, 4*. Study on Qualitative and Quantitative Detection of Pefloxacin and
Fleroxacin Veterinary Drugs Based on THz-TDS Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1798-1803. |
[2] |
MIAO Shu-guang1, SHAO Dan1*, LIU Zhong-yu2, 3, FAN Qiang1, LI Su-wen1, DING En-jie2, 3. Study on Coal-Rock Identification Method Based on Terahertz
Time-Domain Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1755-1760. |
[3] |
JIANG Qing-hu1, LIU Feng1, YU Dong-yue2, 3, LUO Hui2, 3, LIANG Qiong3*, ZHANG Yan-jun3*. Rapid Measurement of the Pharmacological Active Constituents in Herba Epimedii Using Hyperspectral Analysis Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1445-1450. |
[4] |
PAN Zhao1, LI Zong-liang1, ZHANG Zhen-wei2, WEN Yin-tang1, ZHANG Peng-yang1. Defect Detection and Analysis of Ceramic Fiber Composites Based on
THz-TDS Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1547-1552. |
[5] |
ZHENG Zhuan-ping, LI Ai-dong, DONG Jun, ZHI Yan, GONG Jia-min. Terahertz Spectroscopic Investigation of Maleic Hydrazide Polymorphs[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1104-1108. |
[6] |
WU Jing-zhu1, LI Xiao-qi1, SUN Li-juan2, LIU Cui-ling1, SUN Xiao-rong1, YU Le1. Advances in the Application of Terahertz Time-Domain Spectroscopy and Imaging Technology in Crop Quality Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 358-367. |
[7] |
JIAO Qing-liang1, LIU Ming1*, YU Kun2, LIU Zi-long2, 3, KONG Ling-qin1, HUI Mei1, DONG Li-quan1, ZHAO Yue-jin1. Spectral Pre-Processing Based on Convolutional Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 292-297. |
[8] |
YAN Fang, ZHANG Jun-lin*, MAO Li-cheng, LIU Tong-hua, JIN Bo-yang. Research on Information Extraction Method of Carbohydrate Isomers Based on Terahertz Radiation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 26-30. |
[9] |
WANG Xin-qiang1, 3, HU Feng1, 3, XIONG Wei2, YE Song1, 3, LI Shu1, 3, GAN Yong-ying1, 3, YIN Shan1, 3, WANG Fang-yuan1, 3*. Research on Raman Signal Processing Method Based on Spatial Heterodyne[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 93-98. |
[10] |
WANG Xue-yuan1, 2, 3, HE Jian-feng1, 2, 3*, NIE Feng-jun2, YUAN Zhao-lin1, 2, 3, LIU Lin1, 2, 3. Decomposition of X-Ray Fluorescence Overlapping Peaks Based on Quantum Genetic Algorithm With Multi-Fitness Function[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 152-157. |
[11] |
ZHENG Zhuan-ping, LI Ai-dong, LI Chun-yan, DONG Jun. Terahertz Time-Domain Spectral Study of Paracetamol[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3660-3664. |
[12] |
HE Xiong-fei1, 2, HUANG Wei3, TANG Gang3, ZHANG Hao3*. Mechanism Investigation of Cement-Based Permeable Crystalline Waterproof Material Based on Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3909-3914. |
[13] |
LIN Hong-mei1, CAO Qiu-hong1, ZHANG Tong-jun1, LI Zhao-xin1, HUANG Hai-qing1, LI Xue-min1, WU Bin2, ZHANG Qing-jian3, LÜ Xin-min4, LI De-hua1*. Identification of Nephrite and Imitations Based on Terahertz Time-Domain Spectroscopy and Pattern Recognition[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3352-3356. |
[14] |
ZHU Zhi-gao1, LIU Ya1*, YANG Jie1, HU Guo-qing2, 3. A Review of Single-Cavity Dual-Comb Laser and Its Application in Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3321-3330. |
[15] |
LIU Chen-yang1,2, XU Huang-rong2,3, DUAN Feng4, WANG Tai-sheng1, LU Zhen-wu1, YU Wei-xing3*. Spectral Discrimination of Rabbit Liver VX2 Tumor and Normal Tissue Based on Genetic Algorithm-Support Vector Machine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3123-3128. |
|
|
|
|