光谱学与光谱分析 |
|
|
|
|
|
Discrimination of Lactarius and Russula Mushrooms with FTIR and Two-Dimensional Correlation Infrared Spectroscopy |
MA Dian-xu, LIU Gang*, OU Quan-hong, YU Hai-chao, LI Hui-mei, LIU Yan |
School of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China |
|
|
Abstract Tri-step infrared spectroscopy method of Fourier transform infrared spectroscopy, second derivative infrared spectroscopy and two-dimensional correlation infrared spectroscopy was firstly used to discriminate six species of mushrooms belonging to the genus Lactarius and Russula. The absorption bands of the original spectrum were very similar, which were composed by protein and polysaccharides, but tiny differences were observed at the position, shape and absorption intensities of peaks. Second derivative infrared spectroscopy technology was applied to study 6 species of the samples, there were obvious differences in the range of 1 800~1 400 and 1 200~800 cm-1. Two-dimensional correlation infrared spectroscopy can improve the resolution of spectra. Therefore two-dimensional correlation infrared spectroscopy was used to study 6 kinds of mushrooms. The results showed that there are three auto-peaks in the Lactarius, four in the Russula and significant differences in the number, intensity of auto-peaks and cross peaks were observed in the range of 1 690~1 420 cm-1. In addition, the peaks quantity, position, intensity of auto-peaks and cross peaks were different in the range of 1 110~920 cm-1. It demonstrates that tri-step infrared spectroscopy technology of Fourier transform infrared spectroscopy, second derivative infrared spectroscopy and two-dimensional correlation infrared spectroscopy is a rapid and effective method for discriminating Lactarius and Russula.
|
Received: 2015-04-10
Accepted: 2015-08-20
|
|
Corresponding Authors:
LIU Gang
E-mail: gliu66@163.com
|
|
[1] LIU Xiao-jiao, XU A-sheng, DENG Li-jun(刘小娇, 徐阿生, 邓丽君). Edible Fungi of China(中国食用菌), 2010, 29(4): 8. [2] MAO Xiao-lan(卯晓岚). The Macrofungi in China(中国大型真菌). Zhengzhou: Henan Science and Technology Press(郑州:河南科学技术出版社), 2000. [3] Ozen T, Darcan C, Aktop O, et al. Combinatorial Chemistry & High Throughput Screening, 2011, 14(2): 72. [4] Choong Y K, Sun S Q, Zhou Q, et a1. Journal of Molecular Structure, 2014, 1069: 229. [5] Popescu C M, Popescu M C, Vasile C. Microchemical Journal, 2010, 95(2): 377. [6] Lei Y, Zhou Q, Zhang Y L, et al. Journal of Molecular Structure, 2010, 974: 88. [7] Tian Z H, Wu K, Liu W T, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 140(5): 356. [8] Aneta B, Monika M O, Miroslaw K, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011, 78(4): 1221. [9] SUN Su-qin, ZHOU Qun, QIN Zhu(孙素琴, 周 群, 秦 竹). Atlas of Two-dimensional Correlation Infrared Spectroscopy for Traditional Chinese Medicine Identification(中药二维相关红外光谱鉴定图集). Beijing: Chemical Industry Press(北京: 化学工业出版社), 2003. [10] Li J R, Sun S Q, Wang X X, et al. Journal of Molecular Structure, 2014, 1069: 229. [11] Choong Y K, Sun S Q, Zhou Q, et al. Vibrational Spectroscopy, 2011, 57: 87. [12] DU Juan, PENG Xi-yuan, MA Fang, et al(杜 娟, 彭惜媛, 马 芳, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2014, 34(9): 2439. [13] Zhou Y Q, Yu H, Zhang Y L, et al. Journal of Molecular Structure, 2010, 974(3): 127. [14] Li M Y, Cheng S C, Li D, et a1. Chinese Chemical Letters, 2015, 26: 221. |
[1] |
LI Shu-jie1, LIU Jie1, DENG Zi-ang1, OU Quan-hong1, SHI You-ming2, LIU Gang1*. Study of Germinated Rice Seeds by FTIR Spectroscopy Combined With Curve Fitting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1832-1840. |
[2] |
ZHA Ling-ling1, 2, 3, WANG Wei2*, XIE Yu1, SHAN Chang-gong2, ZENG Xiang-yu2, SUN You-wen2, YIN Hao2, HU Qi-hou2. Observation of Variations of Ambient CO2 Using Portable FTIR
Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1036-1043. |
[3] |
AIBIBAIHAN Maturzi1, XU Rong2, LI Xiao-jin1, 3*, FAN Cong-zhao3, QI Zhi-yong3, ZHU Jun3, WANG Guo-ping3, ZHAO Ya-qin3. Study on Infrared Spectrum Fingerprint of Apocynumvenetum L. in Xinjiang Based on Double Index Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 757-763. |
[4] |
LI Ying-ying1, ZHANG Zhi-qing1*, WU Xiao-hong2, Andy Hsitien Shen1*. Photoluminescence in Indonesian Fossil Resins[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 814-820. |
[5] |
AN Zhen-hua1, ZHAO Dong-yan2, YE Yan1, YANG Rui1*, WANG Yu-bo2, SHAO Jin2, ZHANG Peng2, CHEN Yan-ning2, 3, ZHOU Min2, WANG Wen-he2, WANG Zheng2, HUANG Hai-chao2, WANG Li-cheng3, ZHONG Ming-chen3, ZHEN Yan2, WAN Yong2. A Novel Aging Evaluation Method of Nylon[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 43-48. |
[6] |
MA Hao1, 2, ZHANG Kai1, JI Jiang-tao1, 2*, JIN Xin1, 2, ZHAO Kai-xuan1, 2. Quantitative Detection of Agaricus Bisporus Freshness Based on VIS-NIR Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3740-3746. |
[7] |
JIA Ting-gui1,2, LI Xun1*, QU Guo-na1, LI Wei3, YAO Hai-fei3,4,5, LIU Ting-fang6. FTIR Characterization of Chemical Structures Characteristics of Coal Samples With Different Metamorphic Degrees[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3363-3369. |
[8] |
LI Qiong, MA Shuai-shuai, PANG Shu-feng, ZHANG Yun-hong*. Measurement on Mass Growth Factors of (NH4)2SO4, NH4NO3, and Mixed (NH4)2SO4/NH4NO3 Aerosols Under Linear RH Changing Mode[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3444-3450. |
[9] |
WU Jing-xuan, LI Jie*, LIN Jia-wei, YI Shi-wen, LI Min, SU Wen-rou. Influence Mechanism of Microwave on Barite Flotation Based on Infrared Fitting Spectrum Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3083-3091. |
[10] |
ZHANG Ying-qiang1, ZHANG Shui-qin2, WANG Li-yan1*, YUAN Liang2, LI Yan-ting2, XIONG Qi-zhong3, LIN Zhi-an2, ZHAO Bing-qiang2*. Multispectral Structural Characterization of Low-Molecular-Weight Organic Acids Modified Urea[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3129-3136. |
[11] |
ZHAO Yu-xuan1, ZENG Le-yang-zi2, LI Kai-kai1*. Identification of Different Brands Erasable Pens by Infrared Spectroscopy Combined With Chemometrics Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2420-2426. |
[12] |
WAN Hong-bing, LI Hai-peng, LEI Yuan-hua, XIE Peng, ZHANG Song-shan, FENG Yong-hong, LIU Xuan, WANG Huan, SUN Bao-zhong*. Effect of Degree of Doneness on Conformation of Myofibrillar Proteins by Two-Dimensional Infrared Correlation Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2082-2086. |
[13] |
ZHANG Feng1, TANG Xiao-jun1*, TONG Ang-xin1, WANG Bin1, TANG Chun-rui2, WANG Jie2. A Mid-Infrared Wavelength Selection Method Based on the Impact Value of Variables and Population Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1795-1799. |
[14] |
ZHANG Jiao1, 2, WANG Yuan-zhong1, YANG Wei-ze1, ZHANG Jin-yu1*. Data Fusion of ATR-FTIR and UV-Vis Spectra to Identify the Origin of Polygonatum Kingianum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1410-1416. |
[15] |
CUI Fang-xiao1, ZHAO Yue2, MA Feng-xiang2, WU Jun1*, WANG An-jing1, LI Da-cheng1, LI Yang-yu1. Optimization of FTIR Passive Remote Sensing Signal-to-Noise Ratio and Its Application in SF6 Leak Detection in Transform Substation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1436-1440. |
|
|
|
|