光谱学与光谱分析 |
|
|
|
|
|
Soil Salinity Modelling Study with Salinity Inference Model Based on the Integration of Soil and Vegetation Spectrum in Arid Land |
WANG Fei1,2, DING Jian-li1,2* |
1. College of Research and Environmental Science, Xinjiang University, Urumqi 830046, China 2. Lab for Oasis Ecosystem, Ministry of Education, Urumqi 830046, China |
|
|
Abstract Only using soil spectrum to model soil salinity is not enough to meet the actual demands because of the complicated soil context. As a remotely sensed indicator, the vegetation type and its growing condition can provide a spatial overview of salinity distribution. Based on the synergistic relationship between soil salinity and vegetation in arid land, this paper tries to combine the spectrum of soil and vegetation to quantitatively estimate the salt content with the help of the concept of two-dimensional feature space. After the analysis of scatter diagram, the soil salinity detecting model was constructed to improve reasoning precision. However, because the impact of soil reflectance on the quantification of vegetation parameters under the individual pixel, the Normalized Difference Vegetation Index (NDVI) was difficult to accurately obtain sparse vegetation cover in arid areas. Therefore, in order to avoid the limitations of NDVI, the Combined Vegetation Indicative Factor(CVIF)was created and supported by Linear Spectral Unmixing Model (LSUM). Then, the study constructed the feature space based on the CVIF and salinity index (SI) and analyzed the response relationship between soil salinity and the trend of scattered points. Finally, a new and operational model termed Salinity Inference Model (SID) was developed. The results showed that the CVIF (R2>0.84, RMSE=3.92) performed better than NDVI(R2>0.66, RMSE=13.77), which means the CVIF was more appropriate for analyzing variations in vegetation cover (particularly halophytes) than NDVI in the study area. The SID was then compared to the Combined Cpectral Response Index (COSRI)(NDVI-based) from field measurements with respect to the soil salt content. The results indicated that the SID values are highly correlated with soil salinity, in contrast to the performance of COSRI. Strong exponential relationships were observed between soil salinity and SID (R2>0.86, RMSE<6.86) compared to COSRI (R2=0.71, RMSE=16.21). These results suggested that the feature space related to biophysical properties combined with CVIF and SI can effectively provide information on soil salinity.
|
Received: 2015-04-07
Accepted: 2015-08-16
|
|
Corresponding Authors:
DING Jian-li
E-mail: watarid@xju.edu.cn
|
|
[1] Fernández-Buces N, Siebe C, Cram S, et al. Journal of Arid Environments, 2006, 65(4): 644. [2] Tilley D R, Ahmed M, Son J H, et al. Journal of Environmental Quality, 2007, 36(3): 780. [3] Zhang T T, Qi J G, Gao Y, et al. Ecological Indicators, 2015, 52: 480. [4] Brunner P, Li H T, Kinzelbach W, et al. International Journal of Remote Sensing, 2007, 28(15): 3341. [5] Jiapaer G, Chen X, Bao A. Agricultural and Forest Meteorology, 2011, 151(12): 1698. [6] Sandholt I, Rasmussen K, Andersen J. Remote Sensing of Environment, 2002, 79(2): 213. [7] Yang J, Wang Y. Advances in Water Resources, 2011, 34(4): 512. [8] Ghulam A, Li Z L, Qin Q, et al. Journal of Applied Remote Sensing, 2007, 1(1): 013529. [9] Zhang F, Tiyip T, Ding J L, et al. Environmental Monitoring and Assessment, 2012, 184(8): 5105. [10] Verstraete M M, Pinty B. IEEE Transactions on, 1996, 34(5): 1254. [11] HE Qi-sheng, TAHIPLOT Tiyip, DING Jian-li(何祺胜, 特依拜·塔西甫拉提, 丁建丽). Resources Science(资源科学), 2006. 28(6): 135. [12] Douaoui A E K, Nicolas H, Walter C. Geoderma, 2006, 134(1-2): 217. [13] Alejandro M, Omasa K. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(4): 309. |
[1] |
WANG Jin1, 2, CHEN Shu-tao1, 2*, DING Si-cheng1, 2, YAO Xue-wen1, 2, ZHANG Miao-miao1, 2, HU Zheng-hua2. Relationships Between the Leaf Respiration of Soybean and Vegetation
Indexes and Leaf Characteristics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1607-1613. |
[2] |
JI Tong1, 2, WANG Bo1, 2, YANG Jun-ying1, 2, LI Qiang1, 2, HE Guo-xing1, 2, PAN Dong-rong3, LIU Xiao-ni1, 2*. Spectral Characteristic Analysis and Spectral Identification of Desert Plants in Yanchi, Ningxia[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 678-685. |
[3] |
DU Meng-meng1, Ali Roshanianfard2, LIU Ying-chao3. Inversion of Wheat Tiller Density Based on Visible-Band Images of Drone[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3828-3836. |
[4] |
JIANG Jing1, 2, ZHAO Zi-wei1, 2, CAI Chang1, 2, ZHANG Jin-song3, CHENG Zhi-qing1, 2*. Hyperspectral Estimation of Tea Leaves Water Content Under the Influence of Dust Retention[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3532-3537. |
[5] |
YANG Han, CAO Jian-fei*, WANG Zhao-hai*, WU Quan-yuan. Study on Soil Salinity Estimation Method of “Moisture Resistance” Using Visible-Near Infrared Spectroscopy in Coastal Region[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3077-3082. |
[6] |
LIU Wei, YU Qiang*, NIU Teng, YANG Lin-zhe, LIU Hong-jun, YAN Fei. Study on the Relationship Between Element As in Soil of Agricultural Land and Leaf Spectral Characteristics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2866-2871. |
[7] |
LIU Yang1, 2, 4, SUN Qian1, 4, HUANG Jue2, FENG Hai-kuan1, 3, 4*, WANG Jiao-jiao1, 4, YANG Gui-jun1, 4. Estimation of Potato Above Ground Biomass Based on UAV Multispectral Images[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2549-2555. |
[8] |
XIA Tian1*, YANG Ke-ming2, FENG Fei-sheng3, GUO Hui4, ZHANG Chao2. A New Copper Stress Vegetation Index NCSVI Explores the Sensitive Range of Corn Leaves Spectral Under Copper Pollution[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2604-2610. |
[9] |
LIU Yang1, 2, 3, SUN Qian1, 3, FENG Hai-kuan1, 3*, YANG Fu-qin4. Estimation of Above-Ground Biomass of Potato Based on Wavelet Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(04): 1205-1212. |
[10] |
ZHANG Sha1, 2, BAI Yun2*, LIU Qi2, TONG De-ming2, XU Zhen-tian2, ZHAO Na2, WANG Zhao-xue2, WANG Xiao-peng2, LI Yong-sha1, 2, ZHANG Jia-hua3, 4. Estimations of Winter Wheat Yields in Shandong Province Based on Remote Sensed Vegetation Indices Data and CASA Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(01): 257-264. |
[11] |
FENG Shuai1, CAO Ying-li1,2*, XU Tong-yu1,2, YU Feng-hua1,2, CHEN Chun-ling1,2, ZHAO Dong-xue1, JIN Yan1. Inversion Based on High Spectrum and NSGA2-ELM Algorithm for the Nitrogen Content of Japonica Rice Leaves[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(08): 2584-2591. |
[12] |
JI Tong1, 2, WANG Bo1, 2, YANG Jun-yin1, 2, LIU Xiao-ni1, 2*, WANG Hong-wei3, WANG Cai-ling4, PAN Dong-rong5, XU Jun6. Hyperspectral-Based Estimation on the Chlorophyll Content of Turfgrass[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(08): 2571-2577. |
[13] |
LIN Yi1, LIU Si-yuan1, YAN Lei1, FENG Hai-kuan2, ZHAO Shuai-yang1, ZHAO Hong-ying1*. Improvement of Hyperspectral Estimation of Nitrogen Content in Winter Wheat by Leaf Surface Polarized Reflection Measurement[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(06): 1956-1964. |
[14] |
LIU Shuang, YU Hai-ye, CHEN Mei-chen, PIAO Zhao-jia, YU Tong, LI Fa-qin-wei, SUI Yuan-yuan*. School of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(05): 1575-1580. |
[15] |
GAO Peng1, YANG Ke-ming1*, RONG Kun-peng1, CHENG Feng1, LI Yan1, WANG Si-jia2. Feature Band Extraction and Degree Monitoring of Corn Pollution under Copper Stress[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(02): 529-534. |
|
|
|
|