光谱学与光谱分析 |
|
|
|
|
|
Study on Hydrothermal Preparation and Luminescence Properties of Luminescent Material BaSrMg(PO4)2∶Eu3+ |
HU Qing-song, ZHU Cheng-jing, XIA Yue-yi, WANG Li-li, LIU Wen-han, PAN Zai-fa* |
Chemical Engineering Science, Zhejiang University of Technology, Hangzhou 310014, China |
|
|
Abstract Eu3+ doped BaSrMg(PO4)2 were prepared by a hydrothermal method. The crystal structure and morphology of BaSrMg(PO4)2∶Eu3+ phosphor were characterized by X-ray powder diffraction(XRD) and field emission scanning electron microscopy(FESEM). The effects of different pH values (5, 6, 7 and 8) and different reaction temperatures (120, 140, 160, 180 and 200 ℃) on the crystal structure and morphology of BaSrMg(PO4)2∶Eu3+ phosphor were studied in this paper. The results of XRD indicate that diffraction peaks are sharp and strong only when pH value is 6, meanwhile the FESEM shows the morphology is regular-shaped. The XRD patterns show amorphous halos superimposed with several weak sharp peaks for the samples preparing under the pH values of 5, 7 and 8. It indicates that these three samples are solid solution or mixed phases, which are in accord with the results of FESEM. From the fluorescence spectra, the peaks in the excitation spectra were assigned to the transition from 7F0 to 5D4, 5L8, 5L6 and 5D2, while the peaks of emission spectra corresponding to the transition of 5D1→7F1 and 5D0→7FJ (J= 0, 1, 2, 3 and 4). The strongest emission peak of the optimized phosphor located at 613 nm (5D0→7F2), excited by the main excitation peak with wavelength of 394 nm. The splitting of the emission peaks changes depends on pH values and temperatures, which indicating that luminescence properties is closely related to the crystal structure and morphology of particles.
|
Received: 2014-06-14
Accepted: 2014-08-28
|
|
Corresponding Authors:
PAN Zai-fa
E-mail: panzaifa@zjut.edu.cn
|
|
[1] Zhang Yang, Li Guogong, Geng Dongling, et al. Inorg. Chem., 2012, 51: 11655. [2] Chen Xi, Dai Pengpeng, Zhang Xintong, et al. Inorg. Chem., 2013, 53: 3441. [3] Ji Haipeng, Huang Zhaohui, Xia Zhiguo, et al. Inorg. Chem., 2014,53(20): 11119. [4] Xia Zhiguo, Zhuang Jiaqing, Liao Libing. Inorg. Chem., 2012, 51: 7202. [5] Huang Kuanwei, Chen Weiting, Liu Rushi, et al. Chem. Mater., 2012, 24: 2220. [6] Vladimir A Morozov, Anne Bertha, Joke Hadermann, et al. Chem. Mater., 2013,25(21): 4387. [7] Wu Zhanchao, Liu Jie, Hou Wanguo, et al. Journal of Alloys and Compounds, 2010, 498(2): 139. [8] Dawson Willian J. U.S. Patent, 5112433, 1992. [9] XU Chao-fa, LIU Xiao-hua(许潮发, 刘晓华). Chin. J. Lumin.(发光学报), 2010, 31(5): 701. [10] Grabmaier B C. Journal of Luminescence, 1994, 60-61: 967. [11] Wen Hongli, Jia Guohua, Duan Changkui, et al. Phys. Chem. Chem. Phys., 2010, 12: 9933. [12] Wu Haoyi, Hu Yihua, Wang Yinhai, et al. Optics & Laser Technology, 2011, 43(7): 1104. |
[1] |
ZHENG Sheng-hui1, FU Xiao-jun1,2,4, LIU Ya-nan1, FU Xiao-yan1*, ZHANG Hong-wu3. Spectrum Properties of Mechanoluminescent Materials Sr2SiO4∶Eu, Dy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2032-2037. |
[2] |
FU Wei1,2, PENG Zhao2, ZENG Xiang-wei3, QIN Jian-xun4, LI Xue-biao5, LAI Sheng2, LI Xiao-ting2, ZHANG Yin-meng2. Quantitative Analysis of Mineral Composition in Granite Regolith Based on XRD-Rietveld Full-Spectrum Fitting Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2290-2295. |
[3] |
ZHANG Hao1, 2, 5, WANG Lin3, LONG Hong-ming2, 4, 5. Study on Composite Activating Mechanism of Alkali Steel Slag Cementations Materials by XRD and FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2302-2306. |
[4] |
ZHAN Yan1, ZU Hong-ru1, HUANG Di1*, HU Chao-fan1,2*. Rapid Synthesis of Graphene Oxide Quantum Dots via Hydrothermal Strategy for Cell Imaging Application[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1458-1462. |
[5] |
DENG Yu-qing, CHEN Tao*. Influence Factors of Transparency on Shuikeng Stone from Shoushan[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1400-1405. |
[6] |
WANG hua-yu1, YAN Jing-hui1*, ZOU Ming-qiang2, 3*. Influence of SO2-4/BO3-3 Doping on Properties of NaGd(MoO4)2∶Eu3+ Phosphors[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(01): 139-143. |
[7] |
ZHANG Fang1, 2, 3, ZHANG Wei-jie1, 3, DING Yan-yan1, 3, ZHAO Zhong-guo1, 3, GE Hao1, 3. XRD Diffraction Characteristics and Microscopic Morphology of Carbonates in Saline-Alkaline Soil from the Shore of the Aibi Lake[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3893-3899. |
[8] |
ZHANG Li-juan1, 2, WANG Shu-tao1*, YANG Zhe1, CHENG Peng-fei1. The Determination and Characterization of Main Components in Patchouli Based on the XRF, PXRD and FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3889-3892. |
[9] |
HE En-jie1, DONG Jun2, GAO Wei2, ZHANG Zheng-long3. Upconversion Fluorescence Regulation of Single NaGdF4∶Yb3+,Er3+[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(11): 3347-3353. |
[10] |
HU Wen-hua, DONG Jun, CHI Zi-fang*, REN Li-ming. Preparation and Spectroscopy Characterization of Magnetic Pb(Ⅱ)-Ion Surface Imprinted Polymers(Fe3O4/GO-IIP)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(11): 3499-3503. |
[11] |
ZHAI Hao-ying, ZOU Hao. Synthesis of Cr, Ag Co-Doped ZnS Nanomaterials and Its Adsorption Capability for Reactive Dyes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(08): 2638-2644. |
[12] |
WU Cheng-ling1, GUO Jun-hong1, 2, YAO Heng-bin1, PAN Ling-nan1, WANG Fei1, WU Wen-qi1, JI Tong1, HU Fang-ren1, 2*. Study on the Photoluminescence Properties of ZnO Single Crystal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(06): 1700-1702. |
[13] |
XU Dan-zhi1, FENG Jing1, YANG Xiao-yun2, ZU En-dong1, CUI Xiao-ying2, LIN Jin-chang2, DONG Kun2*. Preparation and Spectroscopic Characteristics of CaAl2Si2O8∶Eu, Ce, Tb Fluorescent Material[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(06): 1804-1808. |
[14] |
ZHU Ya-ming1, ZHAO Xue-fei1*, GAO Li-juan1, CHENG Jun-xia1, LÜ Jun1, 2, LAI Shi-quan1. Quantitative Study of the Microcrystal Structure on Coal Based on Needle Coke with Curve-Fitted of XRD and Raman Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(06): 1919-1924. |
[15] |
XU Zheng1, ZHAO Su-ling1, PENG Xiao-bo2, GAO Chen-jia1, GAO Yi-qun1, WANG Yun2. Synthesis and Luminescence Properties of Monodisperse Spherical CaWO4∶Re3+(Sm3+, Eu3+) Red Phosphors[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(05): 1363-1367. |
|
|
|
|