光谱学与光谱分析 |
|
|
|
|
|
Modified Mechanism of Cell Walls from Chinese Fir Treated with Low-Molecular-Weight Phenol Formaldehyde Resin |
HUANG Yan-hui1*, FEI Ben-hua2, ZHAO Rong-jun3 |
1. Key Laboratory of Wooden Material Science and Application, Ministry of Education, Beijing Forestry University, Beijing 100083, China2. International Center for Bamboo and Rattan, Beijing 100102, China3. Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China |
|
|
Abstract Study on the modified mechanism of wood cell walls, it is very important for improving treatment reagents, optimizing treatment technology, and enhancing wood density, mechanical properties, dimensional stability, and so on. Samples of plantation Chinese fir were treated gradually with synthesized water-soluble low-molecular-weight phenol formaldehyde (PF) resins under vacuum and pressure. The correlated physical and chemical properties of the treated and untreated reference samples were determined by X-ray diffractometer(XRD), Fourier transform infrared spectrometer(FTIR), and nuclear magnetic resonance spectrometer(NMR)(Using method of Cross Polarization/Magic Angle Spinning for continuous testing) with high precision and resolution. The results showed that, after treated with water-soluble low-molecular-weight PF resin, the average values of crystallinity from the treated samples were decreased obviously, and the average reduction rate was 12.67%, 11.91% and 6.26%, respectively. Comparing water-soluble, low-molecular-weight PF resin modified Chinese fir with untreated reference samples, no new chemical shifts and characteristic peaks of functional groups from esters, ethers, etc. were present by using FTIR and 13C NMR spectrum. It was considered that there was no distinct chemical reaction between the water-soluble low-molecular-weight PF resin and Chinese Fir cell walls. But water-soluble low-molecular-weight PF resin could enter into the structure relatively loose, large size spaces, relatively area large amorphous regions in cell walls of Chinese fir tracheids, and form physical filling, which resulting in the decreasing of relative crystallinity. This study has important reference value for the development of new wood modification reagents and the optimization of wood modification process. The findings also provide important theoretical foundation for further proving the modification mechanisms of wood cell walls and enriching the modified theories of wood cell walls.
|
Received: 2014-10-20
Accepted: 2015-01-26
|
|
Corresponding Authors:
HUANG Yan-hui
E-mail: huangyanhuizhou@163.com
|
|
[1] Furuno T, Imamura Y, Kajita H. Wood Science and Technology, 2004, 37(5): 349. [2] Gindl W. Holzforschung, 2010, 64(3): 337. [3] Kamke F A,Lee J N. Wood and Fiber Science, 2007, 39(2): 205. [4] Yelle D J, Ralph J, Frihart C R. Holzforschung, 2011, 65: 131. [5] Gindl W, Dessipri E, Wimmer R. Holzforschung, 2002, 56: 103. [6] Gindl W. Experimental Analysis of Nano and Engineering Materials and Structures, 2007,(2): 493. [7] Gindl W. Holzforschung, 2010, 64(3): 337. [8] HUANG Yan-hui, ZHAO Rong-jun, FEI Ben-hua(黄艳辉,赵荣军,费本华, 等). Bioresources, 2013,8(1):272. [9] LI Jian(李 坚). Wood Spectroscopy(木材光谱学). Beijing: Science Press(北京:科学出版社), 2002. 18. [10] Borysiak S, Doczekalska B. FIBRES & TEXTILES in Eastern Europe, 2008, 16(6): 101. [11] SUN Li-mei, LI Ming-yuan, PENG Bo, et al(孙立梅,李明远,彭 勃,等). Acta Petrolei Sinica(石油学报),2008,24(1):63. [12] QIN Te-fu, YAN Hao-peng(秦特夫,阎昊鹏). China Wood Industry(木材工业), 1999, 13(4): 17. |
[1] |
HU Hua-ling1, 2, 3, LI Meng2, 3*, HE Xiao-song2, 3, XI Bei-dou2, 3, ZHANG Hui2, 3, LI Dan2, 3, HUANG Cai-hong2, 3, TAN Wen-bing2, 3. FTIR Spectral Characteristics of Rice Plant Growing in Mercury Contaminated Soil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2081-2085. |
[2] |
MA Dian-xu1, LIU Gang1*, OU Quan-hong1, YU Hai-chao1, LI Hui-mei1, SHI You-ming2. Discrimination of Common Wild Mushrooms by FTIR and Two-Dimensional Correlation Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2113-2122. |
[3] |
ZHANG Hao1, 2, 5, WANG Lin3, LONG Hong-ming2, 4, 5. Study on Composite Activating Mechanism of Alkali Steel Slag Cementations Materials by XRD and FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2302-2306. |
[4] |
SUN Heng1, JIN Hang2,3, HU Qiang1, KANG Ping-de1, CHEN Jun-fei1, HE Jia-wei1*, WANG Yuan-zhong2,3*. Infrared Spectroscopy Combined with Chemometrics for Rapid Determination of Total Flavonoids in Dendrobium Officinale[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1702-1707. |
[5] |
LI Yun1,2,3, ZHANG Ji1,2, LIU Fei4, XU Fu-rong3, WANG Yuan-zhong1,2*, ZHANG Jin-yu1,2,3*. Prediction of Total Polysaccharides Content in P. notoginseng Using FTIR Combined with SVR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1696-1701. |
[6] |
LI Ying1, LI Yao-xiang1*, LI Wen-bin2, JIANG Li-chun3. Model Optimization of Wood Property and Quality Tracing Based on Wavelet Transform and NIR Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1384-1392. |
[7] |
LI Wen-huan1, ZHANG Jin-jie1, YANG Cong-tai2, LIU Li-na1, XU Jie1, LIU Xiao-huan1*, FU Shen-yuan1*. Preparation and Spectral Analysis of Melanmine-Formaldehyde Resin Modified by Benzoguanamine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1481-1485. |
[8] |
XU Xing-wei1, 2, WANG Wei1*, LIU Cheng3, SHAN Chang-gong4, SUN You-wen1, HU Qi-hou1, TIAN Yuan1, HAN Xue-bing1, YANG Wei1. Observations of Total Columns of CO Based on Solar Absorption Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1329-1334. |
[9] |
WANG Li-shuang, ZHANG Wen-bo*, TONG Li. Studies on Dimensional Stability of Wood under Different Moisture Conditions by Near Infrared Spectroscopy Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1066-1069. |
[10] |
PANG Ting-wen1, YANG Zhi-jun1, 2*, HUANG Yi-cong1, LEI Xue-ying1, ZENG Xuan1, LI Xiao-xiao1. Adsorption Properties of Thiol-Modified, Sodium-Modified and Acidified Bentonite for Cu2+, Pb2+ and Zn2+[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1203-1208. |
[11] |
ZHANG Guang-na1, LIN Xiang-jie2, LI Yun-mei3, XU Shu-jian1, ZHANG Yu-lan4*. Fourier Transform Infrared Spectroscopy Analysis of Humic Acids from Brown and Cinnamon Soils under Robinia pseudoacacia Forest[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1298-1302. |
[12] |
LIU Xing-bin, WANG Yue*, HAN Xiao-ri*, MA Bin. Feasibility of Rapid Evaluation of Urea-Formaldehyde Fertilizer by Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 750-755. |
[13] |
XU Bei-lei1, SUN Su-qin2, ZHANG Gui-jun3, LI Wen-lan1, WANG Rui4, ZHANG Yan1, JIN Zhe-xiong1*, SONG Lin5. Study on Aqueous Extracts of Three Kinds of Radix Puerariae in Clinical by 2D-IR Correlation Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 800-804. |
[14] |
ZHANG Qi, FANG Hong-xia, ZHANG Hui-li, QIN Dan, HONG Zhi, DU Yong*. Vibrational Spectroscopic Characterization of the Co-Crystal and the Forming Condition between γ-Aminobutyric Acid and Benzoic Acid[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3786-3792. |
[15] |
WANG Zhe1, 2, LIU Jun-liang1*, SUN Bai-ling1, CAO Jin-zhen2. Study on Mechanism of Moisture Absorption Change of Larch Plantation under Vacuum Heat Treatment[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(10): 3160-3164. |
|
|
|
|