光谱学与光谱分析 |
|
|
|
|
|
Development of a High Spectral Resolution UV Flat-Field Spectrograph |
DU Liang-liang1, DU Xue-wei2, LI Chao-yang2, AN Ning2, WANG Qiu-ping2* |
1. Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230029, China 2. National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China |
|
|
Abstract As an important optical splitting element, grating is used in many different spectrometers and spectrographs. Spherical varied-line-spacing grating (SVLSG) is easily combined with array detectors to get a wide wavelength range of spectrums in one time, because it can focus the spectrums in approximately a plane. Therefore, it’s widely used in many spectral instruments. We usually only know the central groove density of a commercial grating and its mounting parameters, while its line spacing parameters are unknown. Moreover, the mounting parameters are optimized within the whole using wavelength range of the grating. However, in most circumstances only part of the wavelength range is used. Therefore, the mounting parameters are not optimized for the needed wavelength range. Under this condition, in this article we developed a method based on the focusing theory of the flat-field grating and the mounting parameters the manufacture provided to deduce the line spacing parameters of the grating. With these parameters, we can optimize the detector position according to the wavelength range we need and ray tracing can be done to test the optical system. In this article we developed a high spectral resolution ultraviolet spectrograph, covering a wavelength range of 230~280 nm. The grating used in this spectrograph has a central groove density of 1 200 lines·mm-1 and a designed wavelength range of 170~500 nm. We deduced the line spacing parameters of the grating and optimized the detector mounting parameters. Hollow cathode lamps of different elements were used to calibrate the spectrograph and test the spectral resolution of it. Wavelength calibration of the spectrograph has been done with the parameter fitting method, and the calibration accuracy is better than 0.01 nm. Results show the spectral resolution of the spectral graph is about 0.08 nm at 280.20 nm.
|
Received: 2014-02-26
Accepted: 2014-05-16
|
|
Corresponding Authors:
WANG Qiu-ping
E-mail: qiuping@ustc.edu.cn
|
|
[1] Prieto-Blanco X, Montero-Orille C, Gonzalez-Nunez H, et al. Optics Express, 2010, 18(12): 12756. [2] Frassetto F, Coraggia S, Miotti P, et al. Optics Express, 2013, 21(15): 18290. [3] Pallamraju D, Laskar F I, Singh R P, et al. Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 103(SI): 176. [4] Gissis I, Rikanati A, Be’Ery I, et al. Journal of Quantitative Spectroscopy & Radiative Transfer, 2013, 127: 176. [5] Mouriz M D, Largo E L, Prieto-Blanco X, et al. Appl. Optics, 2011, 50(16): 2418. [6] Van Gorp B, Mouroulis P, Green R O, et al. Proc. SPIE, Imaging Spectrometry ⅩⅦ, 2012, 8515: 85150G. [7] Frassetto F, Dziarzhytski S, Guerassimova N, et al. Journal of Physics: Conference Series, 2013, 425: 122010. [8] Shen Y C, Lu B, Du X W, et al. Fusion Engineering and Design, 2013, 88(11): 3072. [9] Wu T, Wang X B, Wang S Y. Plasma Science & Technology, 2013, 15(5): 435. [10] Harada Y, Kobayashi M, Niwa H, et al. Review of Scientific Instruments, 2012, 83(1): 013116. [11] Wu J F, Chen Y Y, Wang T S. Applied Optics, 2012, 51(4): 509. [12] Li Z Y, Deen M J, Fang Q Y, et al. Applied Optics, 2012, 51(28): 6855. [13] Harada T, Kita T. Applied Optics, 1980, 19(23): 3987. [14] Du X W, Li C Y, Xu Z, et al. Applied Spectroscopy, 2011, 65(9): 1083. |
[1] |
WANG Yue1, 3, 4, CHEN Nan1, 2, 3, 4, WANG Bo-yu1, 5, LIU Tao1, 3, 4*, XIA Yang1, 2, 3, 4*. Fourier Transform Near-Infrared Spectral System Based on Laser-Driven Plasma Light Source[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1666-1673. |
[2] |
LI Jia-yi1, YU Mei1, LI Mai-quan1, ZHENG Yu2*, LI Pao1, 3*. Nondestructive Identification of Different Chrysanthemum Varieties Based on Near-Infrared Spectroscopy and Pattern Recognition Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1129-1133. |
[3] |
SU Jing-ming1, 2, 3, ZHAO Min-jie1, ZHOU Hai-jin1, YANG Dong-shang1, 2, HONG Yan3, SI Fu-qi1*. On-Orbit Degradation Monitoring of Environmental Trace Gases Monitoring Instrument Based on Level 0 Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 686-691. |
[4] |
CHENG Liang-xiao1, 2, TAO Jin-hua1*, ZHOU Hai-jin3, YU Chao1, FAN Meng1, WANG Ya-peng4, WANG Zhi-bao5, CHEN Liang-fu1. Evaluations of Environmental Trace Gases Monitoring Instrument (EMI) Level 1 Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3881-3886. |
[5] |
SUN Xue-peng1, 2, ZHANG Xiao-yun1, 2, SHAO Shang-kun1, 2, WANG Ya-bing1, 2, LI Hui-quan1, 2, SUN Tian-xi1, 2*. A Method Quickly to Measure the Size of the Confocal Volume of Confocal X-Ray Instrument[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3493-3497. |
[6] |
ZHAO Sen, LIANG Xiao-tian, YU Meng-ke, CAI Jing*. Study on the Inspection of Shooting Residues by Micro-Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3142-3146. |
[7] |
WAN Shun-kuan1, 2, LÜ Bo1, ZHANG Hong-ming1*, HE Liang1, FU Jia1, JI Hua-jian3, WANG Fu-di1, BIN Bin1, LI Yi-chao1, 2. Quick Measurement Method of Condensation Point of Diesel Based on Temperature-Compensation Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3111-3116. |
[8] |
LI Hao-guang1, 2, YU Yun-hua1, 2, PANG Yan1 , SHEN Xue-feng1, 2. Study on Characteristic Wavelength Extraction Method for Near Infrared Spectroscopy Identification Based on Genetic Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2437-2442. |
[9] |
ZHONG Ming-yu1, 2, 3, ZHOU Hai-jin2, SI Fu-qi2*, WANG Yu2, DOU Ke2, SU Jing-ming1, 2, 3. Reconstruction of Stack Plume Based on Imaging Differential Absorption Spectroscopy and Compressed Sensing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1708-1712. |
[10] |
WU Zhi-feng, LI Ling, DAI Cai-hong, WANG Yan-fei, XIE Yi-hang, CHENG Qiu-tong. Temperature and Humidity Influence in Field Spectroradiometer Measurement[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1639-1643. |
[11] |
CHEN Yu1, WEI Yong-ming1, WANG Qin-jun1,2*, LI Lin3, LEI Shao-hua4, LU Chun-yan5. Effects of Different Spectral Resolutions on Modeling Soil Components[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 865-870. |
[12] |
ZHAO Xiao-rong1,2, LI Yan-hong1,2*. Study on the Relationship Between Urban Traffic Flow and Tropospheric NO2 Vertical Column Density in Oasis on the North Slope of Tianshan Mountain[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 345-353. |
[13] |
CHEN Fang, GAO Chao, BAI Jie. Thickness Matching Design Between Splitter and Compensatorfor High Spectral Resolution Fourier Transform Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(12): 3941-3945. |
[14] |
XU Jin-li1, 2, HU Meng-ying1, 2, ZHANG Peng-peng1, 2, XING Xia1, 2, BAI Jin-feng1, 2, ZHANG Qin1, 2*. Application of High Pressure Pelletised Sample and LIBS in the Determination of Rare Earth Elements in Soil Samples[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(12): 3806-3811. |
[15] |
LIU Jia-qing1, 2, LI Zhi-zeng1, 4, LI Jing3*, LIU Lei1, 4, LIU Lei1, GUO Hong-long1, WANG Jian-guo1. Phase Characterizing and Processing in Fourier Transform Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3328-3335. |
|
|
|
|