光谱学与光谱分析 |
|
|
|
|
|
The Study of Selecting Sample Detecting Position and Lead Plate Inner Material in Thin Film Method X-Ray Fluorescence Measurement |
GAN Ting-ting, ZHANG Yu-jun*, ZHAO Nan-jing, YIN Gao-fang, DONG Xin-xin, WANG Ya-ping, LIU Jian-guo, LIU Wen-qing |
Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China |
|
|
Abstract (1) In this paper type 316 stainless steel metal plate as the research object, the selection of sample detecting position was studied when thin film method X-ray fluorescence measurement was conducted. The study showed that the optimal location for the sample detection was sample distance X-ray tube and detector baseline 1cm with the baseline into a 16°angle. (2) Heavy metal pollutants of Pb, Cd and Cr in industrial ambient air as the main analysis object, when thin film method X-ray fluorescence conducted with lead plate protection, X-rays will penetrate the membrane and continuely stimulate the protective lead plate. Therefore there is lead spectral line interference in the filter membrane background spectrum, which will affect the detection of lead element in real samples. Studies show that when a layer of isolating material was applied between the thin sample and the protective lead plate, the interference of lead line can effectively be avoided. (3) Several rigid insulating material of type 316 stainless steel, brass, aluminum, red copper and PTEE as lead inner material were selected and studied. The study results showed that compared with X-ray fluorescence spectra of other lead inner materials, the X-ray fluorescence spectrum of red copper contained the least element spectral lines. There were not Cr, Cd and Pb spectrum peaks in the X-ray fluorescence spectrum of red copper. And the target timber scattering spectrum intensity in the high energy part was weaker compared to other X-ray fluorescence spectrum. The above analysis shows that red copper has the minimal disturbance to the actual measurement of heavy metals Cr, Cd and Pb. At the same time, red copper as lead inner materials can effectively avoid the interference of lead spectrum line in lead plate. So red copper is the best lead plate inner materials in thin film method X-ray fluorescence spectroscopy measurement. This study provides an important theoretical basis for the assembling and setting up air and water weight metal X-ray fluorescence spectrometer.
|
Received: 2013-12-11
Accepted: 2014-03-22
|
|
Corresponding Authors:
ZHANG Yu-jun
E-mail: yjzhang@aiofm.ac.cn
|
|
[1] Antosz F J, Xiang Y Q, Diaz A R, et al. Journal of Pharmaceutical and Biomedical Analysis, 2012, 62: 17. [2] Peng Y Z, Huang Y M, Yuan D X, et al. Chinese Journal of Analytical Chemistry, 2012, 40(6): 877. [3] LIU Yan-de, WAN Chang-lan, SUN Xu-dong, et al(刘燕德, 万常斓, 孙旭东, 等). Laser & Infrared(激光与红外), 2011, 41(6): 605. [4] Ye H J, Liao X F, Guo S L, et al. Advanced Materials Research, 2012, (518-523): 1510. [5] Gutierrez-Gines M J, Pastor J, Hernandez A J. Environmental Science Processes and Impacts, 2013, 15: 1545. [6] Aranda P R, Colombo L, Perino E, et al. X-Ray Spectrom., 2013, 42: 100. [7] Margui E, Hidalgo M, Queralt I, et al. Spectrochimica Acta Part B, 2012, 67: 17. [8] JI Ang, ZHENG Nan, WANG He-jin, et al(吉 昂, 郑 南, 王河锦, 等). Rock and Mineral Analysis(岩矿测试), 2011, 30(5): 528. [9] Vanhoof C, Chen H, Berghmans P, et al. X-Ray Spectrom., 2003, 32: 129. [10] LIU Xiu-feng(刘秀风). Seek Midical and Ask the Mdicine(求医问药), 2012, 10(12): 508. [11] ZHU Shi-lin, FENG Xi-dan, DANG Zhi(朱石嶙, 冯茜丹, 党 志). Earth and Environment(地球与环境), 2008, 36(1): 26. |
[1] |
FU Yan-hua1, LIU Jing2*, MAO Ya-chun2, CAO Wang2, HUANG Jia-qi2, ZHAO Zhan-guo3. Experimental Study on Quantitative Inversion Model of Heavy Metals in Soda Saline-Alkali Soil Based on RBF Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1595-1600. |
[2] |
OUYANG Zhou-xuan, MA Ying-jie, LI Dou-dou, LIU Yi. The Research of Polarized Energy Dispersive X-Ray Fluorescence for Measurement Trace Cadmium by Geant4 Simulation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1064-1069. |
[3] |
ZHENG Pei-chao, LIU Ran-ning, WANG Jin-mei, FENG Chu-hui, HE Yu-tong, WU Mei-ni, HE Yu-xin. Solution Cathode Glow Discharge-Atomic Emission Spectroscopy Coupled With Hydride Generation for Detecting Trace Mercury and Tin in Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1139-1143. |
[4] |
LI Ai-yang1, FU Liang2*, CHEN Lin3. Determination of Trace Heavy Metal Elements in Plant Essential Oils by Inductively Coupled Plasma Optical Emission Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1162-1167. |
[5] |
YANG Jiong1, 2, QIU Zhi-li1, 4*, SUN Bo3, GU Xian-zi5, ZHANG Yue-feng1, GAO Ming-kui3, BAI Dong-zhou1, CHEN Ming-jia1. Nondestructive Testing and Origin Traceability of Serpentine Jade From Dawenkou Culture Based on p-FTIR and p-XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 446-453. |
[6] |
WANG Xin-qiang1, 3, HU Feng1, 3, XIONG Wei2, YE Song1, 3, LI Shu1, 3, GAN Yong-ying1, 3, YIN Shan1, 3, WANG Fang-yuan1, 3*. Research on Raman Signal Processing Method Based on Spatial Heterodyne[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 93-98. |
[7] |
JIAO Qing-liang1, LIU Ming1*, YU Kun2, LIU Zi-long2, 3, KONG Ling-qin1, HUI Mei1, DONG Li-quan1, ZHAO Yue-jin1. Spectral Pre-Processing Based on Convolutional Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 292-297. |
[8] |
HE Xiong-fei1, 2, HUANG Wei3, TANG Gang3, ZHANG Hao3*. Mechanism Investigation of Cement-Based Permeable Crystalline Waterproof Material Based on Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3909-3914. |
[9] |
ZHU Zhi-gao1, LIU Ya1*, YANG Jie1, HU Guo-qing2, 3. A Review of Single-Cavity Dual-Comb Laser and Its Application in Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3321-3330. |
[10] |
ZHANG Zhi-qi1, ZHAO Tong1, LIU Ling1, LI Yan1,2*. Spectral Characteristics of Madagascar Agates[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3227-3232. |
[11] |
LIU Ming-bo1,2, LIAO Xue-liang2, CHENG Da-wei1,2, NI Zi-yue1,2, WANG Hai-zhou1,2*. An EDXRF Quantitative Algorithm Based on Fundamental Parameters and Spectrum Unfolding[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2807-2811. |
[12] |
LI Zhi-yuan1,2, DENG Fan1*, HE Jun-liang2, WEI Wei1. Hyperspectral Estimation Model of Heavy Metal Arsenic in Soil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2872-2878. |
[13] |
HUANG Ke-jia1, DU Jing2, ZHU Jian3*, LI Nai-sheng2, CHEN Yue2, WU Yuan-yuan4. Mapping Analysis by μ-X-Ray Fluorescence for Waterlogged Archaeological Wood From “Nanhai No.1” Shipwreck[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2930-2933. |
[14] |
WU Lu-yi, GAO Guang-zhen, LIU Xin, GAO Zhen-wei, ZHOU Xin, YU Xiong, CAI Ting-dong*. Study on the Calibration of Reflectivity of the Cavity Mirrors Used in Cavity Enhanced Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2945-2949. |
[15] |
LI Qing-yuan, LI Jing, WEI Xin, SUN Mei-xiu*. Performance Evaluation of a Portable Breath Isoprene Analyzer Based on Cavity Ringdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2415-2419. |
|
|
|
|