光谱学与光谱分析 |
|
|
|
|
|
Study on the Vacuum Ultraviolet Transmittance of Barium Fluoride Crystals at Different Temperature |
PENG Ru-yi1, 2, FU Li-ping1*, TAO Ye3 |
1. National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China2. University of Chinese Academy of Sciences, Beijing 100049, China3. Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Two VUV-grade BaF2 windows with 0.5 mm-thick and 1 mm-thick respectively were selected to study the transmittance variety with the temperature. The results show that the cutoff wavelength of BaF2 crystals will shift towards the long wave with the increase in temperature. In a certain temperature range, BaF2 crystals can depress 130.4nm radiation well, and also has a high transmittance at 135.6 nm. Compared with the reported method in which SrF2 crystals can be applied to suppress 130.4 nm stray light by heating, BaF2 crystal can inhibit the 130.4 nm emission line completely, and thus reduce the power consumption of the device at the same time. This indicates that BaF2 crystals can play an important role in the ionosphere optical remote sensing detection.
|
Received: 2013-05-15
Accepted: 2013-08-08
|
|
Corresponding Authors:
FU Li-ping
E-mail: fuliping@nssc.ac.cn
|
|
[1] Piffl V, Weinzettl V. VUV Imaging Spectroscopy on CASTOR Tokamak. ECA. 29th EPS Conference on Plasma Phys. and Contr. Fusion. Montreux: ECA, 2002. 123. [2] Sagawa E, Immel T J, Frey H U, et al. J. Geophys. Res., 2005, 110: A11302. [3] Eiichi Sagawa, Takashi Maruyama, Thomas J, et al. J. Geophys. Res., 2004, 109: A10309. [4] Zhang Y, Paxton L J, Kozyra J U, et al. J. Geophys. Res., 2006, 111:A09307. [5] Kenneth F Dymond, Scott A Budzien, Damien H Chua, et al. Terr. Atmos. Ocean. Sci., 2009, 20(1): 215. [6] Laufer A H, Pirog J A, Mcnesby J R. Journal of the Optical Society of America, 1965, 55(1): 64. [7] MA De-wei, QIAO Shan, ZHANG Xin-yi, et al(马德伟,乔 山,张新夷,等). Optics and Precision Engineering(光学 精密工程),2007, 15(12): 1844. [8] WANG Li-hui, HE Ling-ping, WANG Xiao-kun, et al(王丽辉,何玲平,王孝坤,等). Optics and Precision Engineering(光学 精密工程),2008,16(1): 43. [9] Tao Ye, Huang Yan, Gao Zhenghua, et al. Journal of Synchrotron Ration, 2009, 16(6): 857. [10] Tao Ye, Huang Yan, Qian Haijie, et al. High Photon Flux Beamline 4B8 for Vacuum Ultraviolet Spectroscopu at BSRF. Jae-Young Choi, Seungyu Rah. Synchrotron Radiation Instrumentation: Ninth International Conference on Synchrotron Radiation Instrumentation. Daegu: AIP, 2007. 555. [11] Scott Budzien, Kenneth Dymond, Clayton Coker, et al. Proc. of SPIE,2009,7438:743813-1-11. |
[1] |
XU Chen1, 2, HUA Xue-ming1, 2*, YE Ding-jian1, 2, MA Xiao-li1, 2, LI Fang1, 2, HUANG Ye1, 2. Study of the Effect of Interference during Multi-Wire GMAW Based on Spectral Diagnosis Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 1993-1997. |
[2] |
LI Zheng-hui1,3, YAO Shun-chun1,3*, LU Wei-ye2, ZHU Xiao-rui1,3, ZOU Li-chang1,3, LI Yue-sheng2, LU Zhi-min1,3. Study on Temperature Correction Method of CO2 Measurement by TDLAS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2048-2053. |
[3] |
CHEN Hao1,2,JU Yu1,HAN Li1,LIU Jun-biao1. Effects of Temperature of Laser Shell on Background Signals for Trace Gas Detection in TDLAS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1670-1674. |
[4] |
SONG Fei-long, JIN Di, JIA Min, SONG Zhi-jie. Spectral Characteristics Study of Atmospheric Pressure Argon Volume Dielectric Barrier Discharge[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1675-1679. |
[5] |
LUO Wei1,2, SUN Feng-long1,2, LIU Jia-rui3, HOU Jun-wu1,2, WANG Ben-gan1,2, HUANG Xiao-ping1,2. Matrix Measurement of Glucose Concentration Based on Surface Plasmon Resonance Sensor[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1982-1986. |
[6] |
FAN Ning, SU Bo*, WU Ya-xiong, ZHANG Hong-fei, ZHANG Cong, ZHANG Sheng-bo, ZHANG Cun-lin. Sandwich Terahertz Microfluidic Chip[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1362-1367. |
[7] |
ZHAO Shuai-yang1, HU Xing-bang1, JING Xin2, JIANG Si-jia1, HE Li-qin1, MA Ai-nai1, YAN Lei1*. Analyses of Land Surface Emissivity Characteristics in Mid-Infrared Bands[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1393-1399. |
[8] |
DONG Xiang-cheng1, YUAN Ping2*. Calculating the Electron Temperature of Lightning Channel Based on the Continuous Radiation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1209-1212. |
[9] |
YANG Yi-fan1, CAI Hong-xing1, WANG Zhao-xuan1, LI Yan2, LI Shuang1*. Inversion Research on the Spectrum Emissivity Based on Slowing Varying Properties of Emissivity[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 702-707. |
[10] |
LI Xue-chen, WU Kai-yue, JIA Peng-ying*, BAO Wen-ting, DI Cong. Spectral Investigation on the Direct-Current Uniform Discharge Ignited by a Dielectric Barrier Discharge at Atmospheric Pressure[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 722-726. |
[11] |
CHEN Lin, DENG Guo-liang, FENG Guo-ying*, XUE Hong-yan, LI Jia-qi. Study on the Mechanism of Laser Paint Removal Based on LIBS and Time Resolved Characteristic Signal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 367-371. |
[12] |
YANG Bin1, GUO Hao-ran1, CHEN Xiao-long2, PAN Ke-wei2, GUI Xin-yang1, CAI Xiao-shu1, LIU Pei-jin3. Research on the Influence of Spectral Response on Radiation Spectroscopy Thermometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 638-642. |
[13] |
DENG Lei, ZHANG Gui-xin*, LIU Cheng, XIE Hong. Measurement of the Gas Temperature in Microwave Plasma by Molecular Emission Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 627-633. |
[14] |
YU Jiang-ping1, LI Chun2, YI Wen-ting1, JIN Biao-bing2, LIU Yun-fei1, JIANG Ling1*. Temperature Dependence of Terahertz Spectra of Amino Acid[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 386-393. |
[15] |
YAO Hong-bing1, YANG Feng-xiao1*, YUAN Dong-qing2, TONG Yan-qun1, YANG Zhao3, CONG Jia-wei1, Emmanuel Asamoah1, WANG Cheng1. Experimental Investigation on the Electron Temperature of Laser-Induced Ti Plasmas[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3851-3854. |
|
|
|
|