光谱学与光谱分析 |
|
|
|
|
|
Investigation of Light Penetration Depth and Distribution Inside Citrus Tissue |
WU Chen-kai, ZHANG Liang, SHEN Huang-tong, FU Xia-ping* |
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China |
|
|
Abstract Experiment was carried out to explore the light intensity change inside citrus samples in the present study. An experimental platform was set up, including a light box, a spectrometer, a sample stage, an optic fiber probe, light sources, etc. The sample stage is adjustable in three dimensions. The optic fiber probe was used to measure the light changes by observing the light attenuation and intensity variation within the citrus tissues. A 632 nm laser source and a 50 W tungsten halogen lamp light source were used. Light intensity and transmittance were investigated at different positions within the citrus fruit. The band with most significant intensity difference was selected to analyze the light intensity and transmittance trends in different positions inside the citrus fruit. In order to examine the influence significance of the sample factor on test results, SPSS software was used to do the analysis of variation (ANOVA) of different samples. The results showed that light intensity and transmittance have a positive correlation with puncture depth, while citrus peel and stone have a more obvious attenuation effect than citrus flesh, and the influence of the sample factor on the test results is not significant. Further research can be carried out by improving the experimental device. The method used and results obtained in this study are valuable for studies on light transmission properties inside fruit tissue, not only for citrus but also for other kinds of fruits.
|
Received: 2013-05-19
Accepted: 2013-08-08
|
|
Corresponding Authors:
FU Xia-ping
E-mail: fuxp@zju.edu.cn
|
|
[1] Nicola B M, Beullens K, Bobelyn E, et al. Postharvest Biology and Technology, 2007, 46: 99. [2] Lin H, Ying Y. Sensing and Instrumentation for Food Quality and Safety, 2009, 3: 130. [3] HOU Rui-feng, HUANG Lan, WANG Zhong-yi, et al(侯瑞锋, 黄 岚, 王忠义, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2005, 21(9): 12. [4] Chen P, Nattuvetty V R. Transactions of ASAE, 1980, 23(2): 519. [5] Lammertyn J, Peirs A, Baerdemaeker De J, et al. Postharvest Biology and Technology, 2000, 18: 121. [6] Qin J, Lu R. Postharvest Biology and Technology, 2008, 49: 355. [7] Fraser D G, Jordan R B, Kunnemeyer R, et al. Postharvest Biology and Technology, 2003, 27: 185. [8] Qin J, Lu R. Computers and Electronics in Agriculture, 2009, 68(1): 44. [9] LI Xi-rong, LIU Mu-hua, LI Jing, et al(李细荣, 刘木华, 黎 静, 等). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2007, 38(6): 103. [10] Baranai L, Zude M. Computer and Electronics in Agriculture, 2009, 69: 33. [11] WU Yan-hong, ZHAO Jie-wen, CHEN Quan-sheng(吴彦红, 赵杰文, 陈全胜, 等). Journal of Jiangsu University: Natural Science Edition(江苏大学学报·自然科学版), 2007, 28(1): 8. [12] Wang W, Li C. Proceedings of SPIE-The International Society for Optical Engineering, v 8369, 2012, Sensing for Agriculture and Food.
|
[1] |
SHENG Liang1, YUAN Liang-jing2*, LI Dong-ling2, ZHANG Xiao-fen3, ZHANG Qiao-chu2, YU Lei2, JIA Yun-hai1*. Determination on Complex Inclusions of High-Speed Railway Wheel Using Spark Source Original Position Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1122-1128. |
[2] |
SHI Ji-yong, LIU Chuan-peng, LI Zhi-hua, HUANG Xiao-wei, ZHAI Xiao-dong, HU Xue-tao, ZHANG Xin-ai, ZHANG Di, ZOU Xiao-bo*. Detection of Low Chromaticity Difference Foreign Matters in Soy Protein Meat Based on Hyperspectral Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1299-1305. |
[3] |
SONG Peng1, CAI Yuan-min1*, GENG Xiao-jun2, GUO Hua1, JI Han-wu1, ZHANG Guo-qing3. Study on Scattering Transmission Characteristics of Wireless UV Communication Based on Particle Size Distribution[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 970-977. |
[4] |
XU Jia-yi1, 3, HUANG Xue2, 3, LUO Hua-ping1, 3*, LIU Jin-xiu1, 3, SUO Yu-ting1, 3, WANG Chang-xu1, 3. Effects of Orientation and Quality on Spatial Spectrum Characteristics of Fruits in Southern Xinjiang[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 910-918. |
[5] |
LI Jun1, 4, KONG De-ming2*, ZHANG Xiao-dan1, MA Qin-yong1, KONG De-han3, KONG Ling-fu1. Simulation Research on Detection of Emulsified Oil Spill on Sea Surface Based on LIF System With Coaxial Transceiver[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 592-597. |
[6] |
ZHANG Xiao-dan1, KONG De-ming2*, YUAN Li1, KONG De-han3, KONG Ling-fu1. BRRDF Simulation Research on Multiple Detection Parameters of Water-in-Oil Emulsion of Oil Spill on the Sea Surface[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3797-3801. |
[7] |
SHEN Xue-jing1, 2, GUO Fei-fei2, XU Peng2, CUI Fei-peng2, LI Xiao-peng2, LIU Jia1, 2. Original Position Statistic Distribution Analysis (OPA) and Characterization of Components in Titanium Alloy Welding Sample by Laser Induced Breakdown Spectroscopy (LIBS)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3869-3875. |
[8] |
ZHAO Yu-hui,LIU Xiao-dong,ZHANG Lei,LIU Yong-hong. Research on Calibration Transfer Method Based on Joint Feature Subspace Distribution Alignment[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3411-3417. |
[9] |
ZHANG Wei-fang1, 2, FAN Ke-feng3, LEI Jing-wei1, 2*, JI Liang1, 2. Infrared Fingerprint and Multivariate Statistical Analysis of Rehmannia Glutinosa[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3392-3398. |
[10] |
PENG Ya1,2, LI Dong-ling2,3*, WAN Wei-hao1,2, ZHOU Qing-qing3,4, CAI Wen-yi1,2, LI Fu-lin1, LIU Qing-bin2,3, WANG Hai-zhou2,3. Analysis of Composition Distribution of New Cast-Forging FGH4096 Alloy Turbine Disk Based on Microbeam X-Ray Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3498-3505. |
[11] |
ZHAO Yu-hui, LU Peng-cheng, LUO Yu-bo, SHAN Peng. NIR Calibration Transfer Method Based on Minimizing Mean Distribution Discrepancy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3051-3057. |
[12] |
ZHANG Zi-han1, YAN Lei1,2, LIU Si-yuan1, FU Yu1, JIANG Kai-wen1, YANG Bin3, LIU Sui-hua4, ZHANG Fei-zhou1*. Leaf Nitrogen Concentration Retrieval Based on Polarization Reflectance Model and Random Forest Regression[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2911-2917. |
[13] |
LIU Jia1, SHEN Xue-jing1, 2, ZHANG Guan-zhen3, GUO Fei-fei2, LI Dong-ling1, 2, WANG Hai-zhou1*. Characterization of Original Position Statistical Distribution of Composition in Train Wheel Steel by Laser-Induced Breakdown Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2269-2274. |
[14] |
SUO Yu-ting1,2, LUO Hua-ping1,2*, LIU Jin-xiu1,2, LI Wei1,2, CHEN Chong3, XU Jia-yi1,2, WANG Chang-xu1,2. A Comparative Study on Roujean and Ross Li Models of Winter Jujube in South Xinjiang Under Different Outdoor Light[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1737-1744. |
[15] |
REN Jiang-bo1,2, WANG Fen-lian1,2*, HE Gao-wen1, 2, ZHANG Xin3, DENG Xi-guang1,2, YU Hong-xia4. μ-XRF Analysis and Data Mining of Deep-Sea Co-Rich Ferromanganese Nodules in Western Pacific[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1834-1840. |
|
|
|
|