光谱学与光谱分析 |
|
|
|
|
|
Gemology and Spectra Characterization of Gem Garnet from Muling City, Heilongjiang Province |
CHEN Tao, LIU Yun-gui, YIN Zuo-wei*, LIU Ni |
Gemmological Institute, China University of Geosciences, Wuhan 430074, China |
|
|
Abstract Cenozoic basalts gem-garnets from Muling City, Heilongjiang Province were studied by using standard gemological methods, electron microprobe, Raman spectroscopy, infrared spectroscopy, and ultraviolet-visible spectroscopy to obtain the gemology and spectra characterization. Chemical composition analysis indicates that the garnets are pyropes with some impurity element Fe, Ca, Mn, Cr, and Ti. The average chemical structure formula of the gem-garnet is (Mn0.022Ca0.455, Fe2+0.720, Mg1.793)∑=2.990(Ti0.003Cr0.009 Fe3+0.062 Al1.951)∑=2.025(SiO4)3. Roman spectrum analysis suggests that there are mixed-phases in the garnet, which can be shown by the Roman shift which is caused by bridging oxygen vibration of garnet. The Roman shifts of bridging oxygen bending vibration of pyrope are at 560 cm-1 (A1g), and 641 cm-1 (Eg+F2g), while the Roman shifts of bridging oxygen bending vibration caused by Eg+F2g of almandine and grossular are at 507 and 486 cm-1. IR functional group area indicates that the pyropes have no molecules water, but seldom pyropes have a little structure water, which forms three stepped weak absorption peaks at 3 585, 3 566 and 3 544 cm-1 respectively. Most pyropes are brown-red, which is caused by electronic transitions of impurity ions Cr3+, Fe3+ and Mn2+. UV-Vis spectra show that absorption peaks caused by electron transition of Fe3+ are at 570, 521 and 502 nm, while absorption peaks caused by electron transition of Mn2+ are at 460 and 430 nm, and absorption peaks caused by electron transition of Cr3+ are at 690 and 367 nm.
|
Received: 2013-05-07
Accepted: 2013-08-15
|
|
Corresponding Authors:
YIN Zuo-wei
E-mail: yinzuowei1025@163.com
|
|
[1] ZHANG Bei-li(张蓓莉). Systematic Gemology(系统宝石学). Beijing: Geology Press(北京: 地质出版社), 2008. 270. [2] Qiu Z L, Yang J H, Yang Y H, et al. Acta Petrologica Sinica, 2007, 23(2): 481. [3] Chen T, Ai H, Yang M X, et al. Gems & Gemology, 2011, 47(1): 36. [4] Chen T, Yang M X, Ai H. Gems & Gemology, 2011, 47(2): 136. [5] HE Mou-chun, HONG Bin, Lü Xin-biao(何谋春, 洪 斌, 吕新彪). Chinese Journal of Light Scattering (光散射学报), 2002, 14(2): 121. [6] FAN Jian-liang, LIU Xue-liang, GUO Shou-guo(范建良, 刘学良, 郭守国). Applied Laser(应用激光), 2007, 27(4): 310. [7] Bell D R, Rossman G R. Science, 1992(225): 1391. [8] Su W, Gao J, Xiong X M. Acta Petrologica Sinica, 2006, 22(5): 1381. [9] ZHANG Jun-feng, JIN Zhen-min, Green II H W, et al(章军锋, 金振民,Green II H W, 等). Chinese Science Bulletin(科学通报), 2000, 45(17): 1889. [10] HE Xue-mei, Lü Lin-su(何雪梅, 吕林素). Earth Science Frontiers(地学前缘), 2007, 14(5): 246. [11] Geiger C A, Stahl A, Rossman G R. European Journal of Mineralogy, 2000, 12(2): 259. |
[1] |
DENG Yu-qing, CHEN Tao*. Influence Factors of Transparency on Shuikeng Stone from Shoushan[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1400-1405. |
[2] |
XING Ying-ying. The Thermal Variation Behavior of “Water” in Nominally Anhydrous Jadeite Mineral[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1036-1043. |
[3] |
PENG Fan1, ZHAO Qing-hua2, PEI Lei1, WANG Chao2, YIN Zuo-wei1*. Study of Mineralogical and Spectroscopic Characteristics of Black Nephrite from Dahua in Guangxi[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(07): 2237-2241. |
[4] |
CHEN Tao1, LIU Yun-gui2, WU Di1, XU Wen-jing1 . Spectra and Mineralogy Study on Black Tianhuang and Kengtou Stone from Shoushan, Fujian Province [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(11): 3693-3697. |
[5] |
HAN Wen1, KE Jie1, CHEN Hua1, LU Tai-jin1, YIN Ke2* . Diffuse Reflectance Spectroscopy of Red Colored “Laowo Stone” [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(08): 2634-2638. |
[6] |
YAN Ruo-gu1,4, QIU Zhi-li1,3*, FENG Ming2, JIN Chun-mei1,3, LI Liu-fen1,3, SHI Gui-yong4, WANG Ping1 . Myanmar Jadeitite Low-Temperature Metamorphic Water-Rock Reaction: Eveidence from Microscopic Fourier Transform Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(09): 2397-2401. |
[7] |
CHEN Quan-li, XU Ya-lan, AI Su-jie, HE An-qi, YIN Zuo-wei*. Vibrational Spectra of Caesious Nephritefrom Qinghai Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(08): 2017-2020. |
[8] |
ZHI Ying-xue1, 2, 3, LIAO Zong-ting2, 3, ZHOU Zheng-yu1, 2, 3*, ZHAO Bo-wen2, 3, WANG Bin2, 3 . A Resolution to the Hydroxy Types of Nephrite and Its Near Infrared Spectroscopy [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(06): 1481-1486. |
[9] |
YANG Xiao-dan1, SHI Guang-hai1, LIU Yan1, 2. Vibrational Spectra of Black Species of Hetian Nephrite (Tremolite Jade) and Its Color Genesis [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32(03): 681-685. |
[10] |
LIU Yan1,2,DENG Jun1,2,XING Yan-yan1,2,JIANG Shao-qing1,2. Vibrational Spectra of Scheelite and Its Color Genesis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2008, 28(01): 121-124. |
|
|
|
|