光谱学与光谱分析 |
|
|
|
|
|
The Characteristics of Microstructure and Chemical Compositions of K-Feldspar, Sphene and Zircon with Zoning Structure |
LIU Chun-hua, WU Cai-lai*, LEI Min, QIN Hai-peng, LI Ming-ze |
State Key Laboratory for Continental Tectonics and Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China |
|
|
Abstract K-feldspar, sphene and zircon in quartz monzonite from Shahewan, south Qinling, showing strong zoning structure. Characteristics of microstructure and chemical compositions of K-feldspar, sphene and zircon with zoning structure were investigated using advanced instruments of electron probe micro analyses equipped with wavelength dispersive spectrometer (EPM-WDS), scanning electron microscopy with energy dispersive spectrometer (SEM-EDS) and laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS). Our study suggests that K+ could be substituted by small amounts of Na+, Ca2+, Ba2+, Fe2+ and Ce3+. Ca2+ in sphene could be replaced by V3+, Ce3+, Ba2+ and Ti4+ could be substituted by both Fe2+ and Al3+. Zircon contains trace elements like Fe, Th, U, Nb, Ta, Y, Hf, Yb and Pb. Concentration of Si, Al, K, Ca, Na, Mg and Ba in K-feldspar ranked from high to low, among which the contents of K and Na are negatively correlated, the lighter part of BSE images featuring K-feldspar is attributed to comparably higher Ba content, additionally, Si and K contents are elevated while Na content decreased rimward. Ca, Si, Ti, Ba, V, Ce, Al and Fe concentration listed downward, among which higher iron content corresponds to brighter portion of BSE images. Element concentration of zircon could be ranked from high to low as Zr, Si, Nd, Ce, Hf, U, Pb and Th, in which Hf and Zr exhibit negatively correlated. Zr concentration increased while Hf, U and Th concentration decreased from core to rim.
|
Received: 2012-12-17
Accepted: 2013-03-10
|
|
Corresponding Authors:
WU Cai-lai
E-mail: wucailai@126.com
|
|
[1] GONG Hu-jun, ZHU Lai-min, SUN Bo-ya, et al(弓虎军, 朱赖民, 孙博亚, 等). Acta Petrologica Sinica(岩石学报), 2009, 25(2): 248. [2] LIU Chun-hua, YIN Jing-wu, WU Cai-lai, et al(刘春花, 尹京武, 吴才来, 等). Acta Petrologica Et Mineralogica(岩石矿物学杂志), 2012, 31(4): 589. [3] CAI Jia, YU Xiao-yan, LIU Chun-hua, et al(蔡 佳, 余晓艳, 刘春花, 等). Journal of Synthetic Crystals(人工晶体学报), 2010, 39(6): 1586. [4] TANG Jing, ZHENG Jing-jing, XU Wei, et al(汤 儆, 郑晶晶, 徐 炜, 等). Acta Physico-Chimica Sinica(物理化学学报), 2011, 27(11): 2613. [5] DONG Zhan-hua, LU Li-xin, LIU Zhi-gang(董占华,卢立新,刘志刚). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2012, 32(11): 3139. [6] WU Cai-lai, GAO Qian-ming, GUO He-ping, et al(吴才来, 高前明, 国和平, 等). Acta Geologica Sinica(地质学报), 2010, 84: 1746. [7] TANG Jun-hua, GU Lian-xing, ZHANG Zun-zhong, et al(唐俊华, 顾连兴, 张遵忠, 等). Progress in Natural Science(自然科学进展), 2008, 18, 769. |
[1] |
FAN Qing-jie, SONG Yan, LAI Shi-quan*, YUE Li, ZHU Ya-ming, ZHAO Xue-fei. XRD Structural Analysis of Raw Material Used as Coal-Based Needle Coke in the Coking Process[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1979-1984. |
[2] |
WANG Yi-ya1, WANG Yi-min1*, GAO Xin-hua2. The Evaluation of Literature and Its Metrological Statistics of X-Ray Fluorescence Spectrometry Analysis in China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1329-1338. |
[3] |
HAN Bing1, SUN Dan-dan2*, WAN Wei-hao1, WANG Hui3, DONG Cai-chang2, ZHAO Lei3, WANG Hai-zhou3*. Element Segregation of Cast-Rolled 7B05 Aluminum Alloy Based on
Microbeam X-Ray Fluorescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1413-1419. |
[4] |
JIANG Xiao-yu1, 2, LI Fu-sheng2*, WANG Qing-ya1, 2, LUO Jie3, HAO Jun1, 2, XU Mu-qiang1, 2. Determination of Lead and Arsenic in Soil Samples by X Fluorescence Spectrum Combined With CARS Variables Screening Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1535-1540. |
[5] |
LI Xiao-li1, GAO Xin-hua2, WANG Yi-min3*, DENG Sai-wen3, WANG Yi-ya3, LI Song3. Review on the Application of X-Ray Fluorescence Spectrometry in Halogen Elements Analysis in Geological Materials[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 997-1009. |
[6] |
NI Zi-yue1, CHENG Da-wei2, LIU Ming-bo2, YUE Yuan-bo2, HU Xue-qiang2, CHEN Yu2, LI Xiao-jia1, 2*. The Detection of Mercury in Solutions After Thermal Desorption-
Enrichment by Energy Dispersive X-Ray Fluorescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1117-1121. |
[7] |
SHENG Liang1, YUAN Liang-jing2*, LI Dong-ling2, ZHANG Xiao-fen3, ZHANG Qiao-chu2, YU Lei2, JIA Yun-hai1*. Determination on Complex Inclusions of High-Speed Railway Wheel Using Spark Source Original Position Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1122-1128. |
[8] |
PAN Qiu-li1, SHAO Jin-fa1, LI Rong-wu2, CHENG Lin1*, WANG Rong1. Non-Destructive Analysis of Red and Green Porcelain in Qing Dynasty[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 732-736. |
[9] |
CUI Ming-fang1, ZHU Jian-hua2*, HU Rui1, CHEN Shang-qian3. Research on the Chemical Composition and Process Feature of Ancient Porcelain Produced in Dongmendu Kiln[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 726-731. |
[10] |
HUANG Yu-ying1, 2, 3, ZHONG Xin-yu2, 3. Progress of Synchrotron Radiation X-Ray Fluorescence Spectrometry in China and Overseas[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 333-340. |
[11] |
YANG Jiong1, 2, QIU Zhi-li1, 4*, SUN Bo3, GU Xian-zi5, ZHANG Yue-feng1, GAO Ming-kui3, BAI Dong-zhou1, CHEN Ming-jia1. Nondestructive Testing and Origin Traceability of Serpentine Jade From Dawenkou Culture Based on p-FTIR and p-XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 446-453. |
[12] |
JIANG Yan1, MAO Ling-lin3, WU Jun3, YANG Xi4, DAI Lu-lu1, YANG Ming-xing1, 2*. Scientific Analysis of Five Turquoise Beads Unearthed From Haochuan Cemetery in Suichang, Zhejiang[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 568-574. |
[13] |
WAN Xiao-ming1, 2, ZENG Wei-bin1, 2, LEI Mei1, 2, CHEN Tong-bin1, 2. Micro-Distribution of Elements and Speciation of Arsenic in the Sporangium of Pteris Vittata[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 478-482. |
[14] |
TANG Ming-zhu1, WANG Zhi-ying1, WANG Yun-shan2*, BAO Wei-jun2, YANG Gang2, SUN Yong3. Characterization of the Impurity Phases in Phosphogypsum by the EBSD-XPS Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 136-140. |
[15] |
WANG Xue-yuan1, 2, 3, HE Jian-feng1, 2, 3*, NIE Feng-jun2, YUAN Zhao-lin1, 2, 3, LIU Lin1, 2, 3. Decomposition of X-Ray Fluorescence Overlapping Peaks Based on Quantum Genetic Algorithm With Multi-Fitness Function[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 152-157. |
|
|
|
|