光谱学与光谱分析 |
|
|
|
|
|
Classification of Hyperspectral Imagery Based on Ant Colony Compositely Optimizing SVM in Spatial and Spectral Features |
CHEN Shan-jing1,2,3, HU Yi-hua1,2*, SHI Liang1,2, WANG Lei1,2, SUN Du-juan1,2, XU Shi-long1,2 |
1. Electronic Engineering Institute,State Key Laboratory of Pulsed Power Laser Technology , Hefei 230037, China 2. Anhui Province Key Laboratory of Electronic Restriction, Hefei 230037, China 3. Department of Astronautics, Electronic Engineering Institute, Hefei 230037, China |
|
|
Abstract A novel classification algorithm of hyperspectral imagery based on ant colony compositely optimizing support vector machine in spatial and spectral features was proposed. Two types of virtual ants searched for the bands combination with the maximum class separation distance and heterogeneous samples in spatial and spectral features alternately. The optimal characteristic bands were extracted, and bands redundancy of hyperspectral imagery decreased. The heterogeneous samples were eliminated form the training samples, and the distribution of samples was optimized in feature space. The hyperspectral imagery and training samples which had been optimized were used in classification algorithm of support vector machine, so that the class separation distance was extended and the accuracy of classification was improved. Experimental results demonstrate that the proposed algorithm, which acquires an overall accuracy 95.45% and Kappa coefficient 0.925 2, can obtain greater accuracy than traditional hyperspectral image classification algorithms.
|
Received: 2012-12-13
Accepted: 2013-02-25
|
|
Corresponding Authors:
HU Yi-hua
E-mail: skl_hyh@163.com
|
|
[1] Chang C I, Safavi H. Pattern Recognition, 2011, 44: 2760. [2] Ritter G X, Urcid G. Information Sciences, 2011, 181: 1787. [3] Wang, L G, Deng L Q. 2009 WRI World Congress on Computer Science and Information Engineering, CSIE, 2009, 7: 144. [4] Demir B, Ertürk S. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 840. [5] Sakla W, Chan A, Sakla A. IEEE Geoscience and Remote Sensing Letters, 2011, 8(2): 384. [6] Mathieu F, Benediktsson J A, Chanussot J, et al. IEEE Transactions Geoscience Remote Sensing, 2008, 46(11): 3804. [7] Dorigo M, Birattari M, Stützle T. IEEE Computational Intelligence Magazine, 2006, 11: 28. [8] Dorigo M, Maniezzo V, Colorni A. IEEE Transactions on Systems, Man, and Cybernetics- Part B, 1996, 26(1): 29. [9] Dorigo M, Gambardella L M. IEEE Transactions Evolutionary Computation, 1997, 1(1): 53. [10] Zhang B, Sun X, Gao L R, et al. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(7): 2635. [11] Melgani F, Bruzzone L. IEEE Transactions Geoscience Remote Sensing, 2004, 42(8): 1778. [12] Tarabalka Y, Benediksson J A, Chanussot J. IEEE Transactions Geoscience Remote Sensing, 2009, 47(8): 2973. [13] Pal M, Foody G M. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(5): 2297. [14] Joshua B, Tenenbaum et al. Science, 2000, 290: 2319. |
[1] |
FENG Rui-jie1, CHEN Zheng-guang1, 2*, YI Shu-juan3. Identification of Corn Varieties Based on Bayesian Optimization SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1698-1703. |
[2] |
LI Quan-lun1, CHEN Zheng-guang1*, SUN Xian-da2. Rapid Detection of Total Organic Carbon in Oil Shale Based on Near
Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1691-1697. |
[3] |
DAI Ruo-chen1, TANG Huan2*, TANG Bin1*, ZHAO Ming-fu1, DAI Li-yong1, ZHAO Ya3, LONG Zou-rong1, ZHONG Nian-bing1. Study on Detection Method of Foxing on Paper Artifacts Based on
Hyperspectral Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1567-1571. |
[4] |
LIU Mei-chen, XUE He-ru*, LIU Jiang-ping, DAI Rong-rong, HU Peng-wei, HUANG Qing, JIANG Xin-hua. Hyperspectral Analysis of Milk Protein Content Using SVM Optimized by Sparrow Search Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1601-1606. |
[5] |
ZHANG Tian-liang, ZHANG Dong-xing, CUI Tao, YANG Li*, XIE Chun-ji, DU Zhao-hui, ZHONG Xiang-jun. Identification of Early Lodging Resistance of Maize by Hyperspectral Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1229-1234. |
[6] |
HUI Yun-ting1, WANG De-cheng1, TANG Xin2, PENG Yao-qi1, WANG Hong-da1, ZHANG Hai-feng1, YOU Yong1*. Detection of Sorghum-Sudan Grass Seed Germination Rate Based on Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 423-427. |
[7] |
JIANG Jie1, YU Quan-zhou1, 2, 3*, LIANG Tian-quan1, 2, TANG Qing-xin1, 2, 3, ZHANG Ying-hao1, 3, ZHANG Huai-zhen1, 2, 3. Analysis of Spectral Characteristics of Different Wetland Landscapes Based on EO-1 Hyperion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 517-523. |
[8] |
LI Ming-liang1, DAI Yu-jia1, QIN Shuang1, SONG Chao2*, GAO Xun1*, LIN Jing-quan1. Influence of LIBS Analysis Model on Quantitative Analysis Precision of Aluminum Alloy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 587-591. |
[9] |
QIN Shuang1, LI Ming-liang1, DAI Yu-jia1, GAO Xun1*, SONG Chao2*, LIN Jing-quan1. The Accuracy Improvement of Fe Element in Aluminum Alloy by Millisecond Laser Induced Breakdown Spectroscopy Under Spatial Confinement Combined With Support Vector Machine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 582-586. |
[10] |
CAO Qiu-hong, LIN Hong-mei, ZHOU Wei, LI Zhao-xin, ZHANG Tong-jun, HUANG Hai-qing, LI Xue-min, LI De-hua*. Water Quality Analysis Based on Terahertz Attenuated Total Reflection Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 31-37. |
[11] |
WU Ye-lan1, CHEN Yi-yu1, LIAN Xiao-qin1, LIAO Yu2, GAO Chao1, GUAN Hui-ning1, YU Chong-chong1. Study on the Identification Method of Citrus Leaves Based on Hyperspectral Imaging Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3837-3843. |
[12] |
ZHOU Bing, LI Bing-xuan*, HE Xuan, LIU He-xiong,WANG Fa-zhen. Classification of Camouflages Using Hyperspectral Images Combined With Fusing Adaptive Sparse Representation and Correlation Coefficient[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3851-3856. |
[13] |
KONG De-ming1, CHEN Hong-jie1, CHEN Xiao-yu2*, DONG Rui1, WANG Shu-tao1. Research on Oil Identification Method Based on Three-Dimensional Fluorescence Spectroscopy Combined With Sparse Principal Component Analysis and Support Vector Machine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3474-3479. |
[14] |
WANG Si-yuan1, ZHANG Bao-jun1, WANG Hao1, GOU Si-yu2, LI Yu1, LI Xin-yu1, TAN Ai-ling1, JIANG Tian-jiu2, BI Wei-hong1*. Concentration Monitoring of Paralytic Shellfish Poison Producing Algae Based on Three Dimensional Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3480-3485. |
[15] |
LIN Hong-mei1, CAO Qiu-hong1, ZHANG Tong-jun1, LI Zhao-xin1, HUANG Hai-qing1, LI Xue-min1, WU Bin2, ZHANG Qing-jian3, LÜ Xin-min4, LI De-hua1*. Identification of Nephrite and Imitations Based on Terahertz Time-Domain Spectroscopy and Pattern Recognition[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3352-3356. |
|
|
|
|