光谱学与光谱分析 |
|
|
|
|
|
Estimation of Chlorophyll Content in Apple Tree Canopy Based on Hyperspectral Parameters |
PAN Bei, ZHAO Geng-xing*, ZHU Xi-cun, LIU Hai-teng, LIANG Shuang, TIAN Da-de |
National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources,College of Resources and Environment, Shandong Agricultural University, Tai’an 271018, China |
|
|
Abstract The hyperspectral reflectance of apple tree canopy during spring shoots stopping growth period was measured using ASD FieldSpec3 field spectrometer. Original spectral data were processed in deviation forms, and significant spectrum parameters correlated with chlorophyll content were found out with correlation analysis. The best vegetation indices were chosen and the apple canopy chlorophyll content estimation model was established by analyzing vegetation index of two-band combination in the sensitive region 400~1 350 nm. The result showed that (1) The sensitive band region of apple canopy chlorophyll content is 400~1 350 nm. (2) The vegetation index CCI(D794/D763)can commendably estimate the apple canopy chlorophyll content. (3) The model with CCI(D794/D763)as the independent variables was determined to be the best for chlorophyll content prediction of apple tree canopy. Therefore, using hyperspectral technology can estimate apple canopy chlorophyll content more rapidly and accurately, and provides a theoretical basis for rapid apple tree canopy nutrition diagnosis and growth monitoring.
|
Received: 2012-12-29
Accepted: 2013-03-05
|
|
Corresponding Authors:
ZHAO Geng-xing
E-mail: zhaogx@sdau.edu.cn
|
|
[1] FENG Wei, ZHU Yan, TIAN Yong-chao, et al(冯 伟, 朱 艳, 田永超,等). Acta Ecologica Sinica(生态学报), 2008, 28(10): 4902. [2] Gitelson A A, Yuri Gritz, Merzlyak M N, et al. Journal of Plant Physiology, 2003., 160: 271. [3] Daughtry, Walthall, Kim, et al. Remote Sensing of Environment, 2000, 74: 229. [4] ZHU Xi-cun, ZHAO Geng-xing, LEI Tong(朱西存, 赵庚星, 雷 彤). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2009, 25(12): 180. [5] WAN Yu-qing, TAN Ke-long, ZHOU Ri-ping(万余庆, 谭克龙, 周日平). Hyperspectral Remote Sensing Applications(高光谱遥感应用研究). Beijing: Science Press(北京: 科学出版社), 2006. 137. [6] ZHU Xi-cun, ZHAO Geng-xing, WANG Rui-yan, et al(朱西存, 赵庚星, 王瑞燕,等). Scientia Agricultura Sinica(中国农业科学),2010, 43(6): 1189. [7] Gamon J A, Penuelas J, Field C B. Remote Sensing of Environment, 1992, 41: 35. [8] Metternicht G. Remote Sensing Environment, 2003, 24: 2855. [9] Pearson R L, Miller L D. Remote Sensing of the Environment, 1972: 1355. [10] GU Zhi-hong(顾志宏). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2012, 32(2): 435. [11] Blackburn G A. International Journal of Remote Sensing, 1998, 19: 657. [12] YAO Xia, ZHU Yan, TIAN Yong-chao, et al(姚 霞, 朱 艳, 田永超,等). Scientia Agricultura Sinica(中国农业科学), 2009, 42(8): 2716. [13] Gitelson A A, Kaufman Y, Merzlyak M N. Remote Sensing Environment, 1996, 58(3): 289. |
[1] |
TIAN Xi1, 2, 3, CHEN Li-ping2, 3, WANG Qing-yan2, 3, LI Jiang-bo2, 3, YANG Yi2, 3, FAN Shu-xiang2, 3, HUANG Wen-qian2, 3*. Optimization of Online Determination Model for Sugar in a Whole Apple
Using Full Transmittance Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1907-1914. |
[2] |
WANG Jin1, 2, CHEN Shu-tao1, 2*, DING Si-cheng1, 2, YAO Xue-wen1, 2, ZHANG Miao-miao1, 2, HU Zheng-hua2. Relationships Between the Leaf Respiration of Soybean and Vegetation
Indexes and Leaf Characteristics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1607-1613. |
[3] |
JI Tong1, 2, WANG Bo1, 2, YANG Jun-ying1, 2, LI Qiang1, 2, HE Guo-xing1, 2, PAN Dong-rong3, LIU Xiao-ni1, 2*. Spectral Characteristic Analysis and Spectral Identification of Desert Plants in Yanchi, Ningxia[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 678-685. |
[4] |
YANG Xu, LU Xue-he, SHI Jing-ming, LI Jing, JU Wei-min*. Inversion of Rice Leaf Chlorophyll Content Based on Sentinel-2 Satellite Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 866-872. |
[5] |
TANG Yu-zhe, HONG Mei, HAO Jia-yong, WANG Xu, ZHANG He-jing, ZHANG Wei-jian, LI Fei*. Estimation of Chlorophyll Content in Maize Leaves Based on Optimized Area Spectral Index[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 924-932. |
[6] |
ZHANG Xiao-yan, HOU Xue-hui, WANG Meng, WANG Li-li*, LIU Feng*. Study on Relationship Between Photosynthetic Rate and Hyperspectral Indexes of Wheat Under Stripe Rust Stress[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 940-946. |
[7] |
DU Meng-meng1, Ali Roshanianfard2, LIU Ying-chao3. Inversion of Wheat Tiller Density Based on Visible-Band Images of Drone[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3828-3836. |
[8] |
QIN Kai1, CHEN Gang2, ZHANG Jian-yi1,2, FU Xia-ping1*. Optimization of Fruit Pose and Modeling Method for Online Spectral Detection of Apple Moldy Core[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3405-3410. |
[9] |
JIANG Jing1, 2, ZHAO Zi-wei1, 2, CAI Chang1, 2, ZHANG Jin-song3, CHENG Zhi-qing1, 2*. Hyperspectral Estimation of Tea Leaves Water Content Under the Influence of Dust Retention[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3532-3537. |
[10] |
LI Li-jie1,2, YUE Yan-bin2, WANG Yan-cang3, ZHAO Ze-ying2, LI Rui-jun2, NIE Ke-yan2, YUAN Ling1*. The Quantitative Study on Chlorophyll Content of Hylocereus polyrhizus Based on Hyperspectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3538-3544. |
[11] |
ZHENG Bei-jun1, 2, 3, CHEN Yun-zhi1, 2, 3*, LI Kai1, 2, 3, WANG Xiao-qin1, 2, 3, XU Zhang-hua1, 2, 4, HUANG Xu-ying5, HU Xin-yu4. Detection of Pest Degree of Phyllostachys Chinese With Hyperspectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3200-3207. |
[12] |
LIU Wei, YU Qiang*, NIU Teng, YANG Lin-zhe, LIU Hong-jun, YAN Fei. Study on the Relationship Between Element As in Soil of Agricultural Land and Leaf Spectral Characteristics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2866-2871. |
[13] |
LIU Yang1, 2, 4, SUN Qian1, 4, HUANG Jue2, FENG Hai-kuan1, 3, 4*, WANG Jiao-jiao1, 4, YANG Gui-jun1, 4. Estimation of Potato Above Ground Biomass Based on UAV Multispectral Images[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2549-2555. |
[14] |
LIU Tan1, 2, XU Tong-yu1, 2*, YU Feng-hua1, 2, YUAN Qing-yun1, 2, GUO Zhong-hui1, XU Bo1. Chlorophyll Content Estimation of Northeast Japonica Rice Based on Improved Feature Band Selection and Hybrid Integrated Modeling[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2556-2564. |
[15] |
ZHENG Yu-dong1, XU Yun-cheng1, YAN Hai-jun1*, ZHENG Yong-jun2. Analysis of Influencing Factors in Wheat/Maize Canopy RVI and NDVI Acquisition Using Ground-Based Remote Sensing System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2578-2585. |
|
|
|
|