光谱学与光谱分析 |
|
|
|
|
|
Infrared Spectroscopy Based on Quantum Cascade Lasers |
WEN Zhong-quan, CHEN Gang, PENG Chen, YUAN Wei-qing |
Key Laboratory for Optoelectronic Technology & System (Chongqing University), Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology (Chongqing University), School of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China |
|
|
Abstract Quantum cascade lasers (QCLs) are promising infrared coherent sources. Thanks to the quantum theory and band-gap engineering, QCL can access the wavelength in the range from 3 to 100 μm. Since the fingerprint spectrum of most gases are located in the mid-infrared range, mid-infrared quantum cascade laser based gas sensing technique has become the research focus world wide because of its high power, narrow linewidth and fast scanning. Recent progress in the QCL technology leads to a great improvement in laser output power and efficiency, which stimulates a fast development in the infrared laser spectroscopy. The present paper gives a broad review on the QCL based spectroscopy techniques according to their working principles. A discussion on their applications in gas sensing and explosive detecting is also given at the end of the paper.
|
Received: 2012-07-19
Accepted: 2012-10-20
|
|
Corresponding Authors:
WEN Zhong-quan
E-mail: wenzq@139.com
|
|
[1] Capasso F, Sivco D L, Sirtori C, et al. Science, 1994, 264(5158): 553. [2] Bai Y, Slivken S, Darvish S R, et al. Proceedings of SPIE, 2010, 7608: 76080F-76080F-8. [3] Lou P Q, Hoffman A J, Escarra M D, et al. Nature Photonics, 2010, 4: 95. [4] Yu J S, Evans A, Slivken S, et al. IEEE Photonics Technology Letters, 2005, 17(6): 1154. [5] Grouiez B, Parvitte B, Joly L, et al. Applied Physics B, 2007, 90(2): 177. [6] Mcculloch M T. Pulsed Quantum Cascade Lasers for Intra-Pulse Spectroscopy of Pollutants Such as Tobacco Bye-Products[C]. Lasers and Electro-Optics, 2 pp. vol.1,Decemeber 2004. (CLEO). Conference on,Baltimore, Maryland, USA. [7] Wysocki G, Mccurdy M, Stephen S, et al. Applied Optics, 2004, 43(32): 6040. [8] Manne J, Jager W, Tulip J. Applied Physics B, 2009, 94(2): 337. [9] Brandstetter M, Genner A, Anic K, et al. Analyst, 2010, 135(12): 3260. [10] Hinkov B, Fuchs F, Yang Q K, et al. Applied Physics B, 2010, 100(2): 253. [11] Kasyutich V L, Raja R K, Martin P A. Infrared Physics & Technology, 2010, 53(5): 381. [12] Karpf A, Rao G N. Applied Optics, 2009, 48(2): 408. [13] Hancock G, Van Helden J H, Peverall R, et al. Applied Physics Letters, 2009, 94(20): 201110. [14] Chen G, Martini R, Park S, et al. Applied Physics Letters, 2010, 97: 011102. [15] Nagele M, Hofstetter D, Faist J, et al. Analytical Sciences, 2001, 17: s497. [16] Kosterev A A, Bakhirkin Y A, Curl R F, et al. Optics Letters, 2002, 27(21): 1902. [17] Kosterev A A, Tittel F K, Serebryakov D, et al. Review of Scientific Instruments, 2005, 76(4): 043105. [18] Holthoff E L, Heaps D A, Pellegrino P M. IEEE Sensors Journal, 2010, 10(3): 572. [19] Demtoder W. Laser Spectroscopy Basic Concepts and Instrumentation, 3rd Edition, Springer, New York, 2003. [20] Litfin G, Pollock C R, Curl R F, et al. Journal of Chemical Physics, 1980, 72(12): 6602. [21] Ganser H, Urban W, Brrown J. Molecular Physics, 2003,101(4): 545. [22] Ganser H, Horstjann M, Suschek C, et al. Applied Physics B, 2004, 78(3-4): 513. [23] Fritsch T, Horstjann M, Halmer D, et al. Applied Physics B, 2008, 93(2-3): 713. [24] Sabana H, Fritsch T, Onana M B, et al. Applied Physics B, 2009, 96(2-3): 535. [25] Lewicki R, Doty J H, Curl R F, et al. Proc. Natl. Acad. Sci., 2009, 106(31): 12587. [26] Zaugg C A, Lewicki R, Day T, et al. Proceedings of SPIE, 2011, 7945: 79450O-79450O-7. [27] Kosterev A A, Roller C, Tittel F K. Sensors Proceedings of IEEE, 2003, 1: 673. [28] Rawlins W T, Hensley J M, Sonnenfroh D M, et al. Applied Optics, 2005, 44(31): 6635. [29] Wehe S, Allen M, Xiang L, et al. Sensors Proceedings of IEEE, 2003, 2: 795. [30] Weidmann D, Kosterev A A, Roller C, et al. Applied Optics, 2004, 43(16): 3329. [31] Montajir R. Development of an Ultra-Low Concentration N<sub>2</sub>O Analyzer Using Quantum Cascade laser[C], SAE 2010 World Congress & Exhibition, Paper Number: 2010-01-1291. [32] Bakhirkin Y A, Kosterev A A, Roller C, et al. Applied Optics, 2004, 43(11): 2257. [33] Weidmann D, Tsai T, Macleod N A, et al. Optics Letters, 2011, 36(11): 1951. [34] Degreif K, Rademacher S, Asheva P D, et al. Proceedings of SPIE, 2011, 7945: 79450P. [35] Hildenbrand J, Herbst J, Wollenstein J, et al. Proc of SPIE, 2009, 7222: 72220B-1. [36] Furstenberg R, Papantonakis M, Kendziora C A, et al. Proceedings of SPIE, 2010, 7665: 76650Q. [37] Ma J, Cheesman A, Ashfold M N R, et al. Journal of Applied Physics, 2009, 106(3): 033305. [38] Wang W, So S, Xie F, et al. Compact Quantum Cascade Laser Based Atmospheric CO<sub>2</sub> Sensor[C], CLEO: Science and Innovations, Baltimore, Maryland, USA, May 1, 2011, Page JMC5. [39] Van Neste C W, Senesac L R, Thundat T. Applied Physics Letters, 2008, 92(23): 234102. [40] Mcmanus J B, Zahniser M S, Nelson D D, et al. Optical Engineering, 2010, 49(11): 111124. [41] Kosterev A A, Tittel F K. Trace HCN Quantification Using Quartz Enhanced Photoacoustic Spectroscopy, CLEO (CLEO), Long Beach, California, May 21, 2006, Laser-Based Sensing Applications (CFD), Page CFD2. [42] Liu W, Wang L, Li L, et al. Applied Physics B, 2010, 103(3): 743. [43] Krtz P, Stupar D, Krieg J, et al. Applied Physics B, 2008, 90(2): 187. [44] Nwaboh J A, Werhahn O, Schiiel D. Applied Physics B, 2011, 130(4): 947. [45] Northern J H, Ritchie G A, Smaknan E P, et al. Optics Letters, 2010, 35(16): 2750. |
[1] |
XU Xing-wei1, 2, WANG Wei1*, LIU Cheng3, SHAN Chang-gong4, SUN You-wen1, HU Qi-hou1, TIAN Yuan1, HAN Xue-bing1, YANG Wei1. Observations of Total Columns of CO Based on Solar Absorption Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1329-1334. |
[2] |
ZHOU Sheng1, 2, HAN Yan-ling1, LI Bin-cheng1, 3*. Calibration Method of Pressure Gauges Based on Cavity Ring-Down Spectroscopy Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1031-1035. |
[3] |
HUA Jin1, ZHAO You-you1, GAO Yuan-hui1, ZHANG Li-hua1, HAO Jia-xue2, SONG Huan1, ZHAO Wen-ying2*. Rapid Detection of Fat Content in Meat with Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(11): 3424-3429. |
[4] |
LÜ Mo1, WANG Yi-ding1*, CHEN Chen2*. Development of Mid-Infrared Trace-CO Detector with Long-Path Differential Optical Absorption Spectroscopy (LP-DOAS)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(07): 2278-2282. |
[5] |
ZHA Yu-tong1, LIU Guang-da1, WANG Yong-xiang1, WANG Te2, CAI Jing1, ZHOU Ge1, SHANG Xiao-hu1*. Noninvasive Cerebral Blood Flow Measurement Based on NIRS-ICG[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(04): 1069-1073. |
[6] |
CHU Xuan1, WANG Wei2, ZHAO Xin1, JIANG Hong-zhe1, WANG Wei1*, LIU Sheng-quan1 . Detection of Camellia Oleifera Oil Adulterated with Sunflower Oil with Near Infrared (NIR) Spectroscopy and Characteristic Spectra [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(01): 75-79. |
[7] |
ZHOU Sheng1, 2, HAN Yan-ling1, LI Bin-cheng1, 3* . Trace Moisture Measurement with 5.2 μm Quantum Cascade Laser Based Continuous-Wave Cavity Ring-Down Spectroscopy [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(12): 3848-3852. |
[8] |
ZHAO Yan1*, WANG An-lin1, CHENG Nian-shou2, LI Zhong-yan1, ZHU Chang-wei1, CAI Chuan-jie1 . Quantitive Analysis of Contents in Yogurt and Application Research with FTIR Spectroscopy [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(12): 3937-3940. |
[9] |
LIN Ping1, CHEN Yong-ming1*, ZOU Zhi-yong2 . Quick Discrimination of Rice Storage Period Based on Manifold Dimensionality Reduction Methods and Near Infrared Spectroscopy Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(10): 3169-3173. |
[10] |
YANG Juan1, 2, CHEN Lan-zhen1, 2*, XUE Xiao-feng1, 2, WU Li-ming1, 2, LI Yi1, 2, ZHAO Jing3, WU Zhao-bin1, 2, ZHANG Yan-nan2. A Feasibility Study on the Discrimination of the Propolis Varieties Based on Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(06): 1717-1720. |
[11] |
LUO Xia1, 2, 3, HONG Tian-sheng2, 3, 4*, LUO Kuo2, 3, 4, DAI Fen1, 2, 3, WU Wei- bin2, 3, 4, MEI Hui-lan2, 3, 4, LIN Lin4. Application of Wavelet Transform and Successive Projections Algorithm in the Non-Destructive Measurement of Total Acid Content of Pitaya[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(05): 1345-1351. |
[12] |
LI Chun-guang1, DANG Jing-min1, LI Jian1, 3, FU Li1, CHEN Chen2*, WANG Yi-ding1*. A Methane Gas Sensor Based on Mid-Infrared Quantum Cascaded Laser and Multipass Gas Cell[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(05): 1291-1295. |
[13] |
LI Chun-guang1, DANG Jing-min1, CHEN Chen2*, WANG Yi-ding1*. Multi-Pass Absorption Spectroscopy for CO Detection Using a Quantum Cascaded Laser[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(05): 1308-1312. |
[14] |
XIONG Ya-ting, LI Zong-peng, WANG Jian*, ZHANG Ying, WANG Shu-jun, YIN Jian-jun, SONG Quan-hou. The Near Infrared Spectral Bands Optimal Selection in the Application of Liquor Fermented Grains Composition Analysis [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(01): 84-90. |
[15] |
YAN Xu1,2, DU Zhou-he1, 2*, BAI Shi-qie3*, ZUO Yan-chun1,2, ZHOU Xiao-kang1,2, KOU Jing1,2, YAN Jia-jun3, ZHANG Jian-bo3, LI Ping4,YOU Ming-hong3, ZHANG Yu3, LI Da-xu3, ZHANG Chang-bing3, ZHANG Jin3 . Potential Applicability of Fecal NIRs: A Review [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(12): 3382-3387. |
|
|
|
|