光谱学与光谱分析 |
|
|
|
|
|
The Measurement and Numerical Study of Numerical Aperture of Photonic Crystal Fiber |
GUO Yan-yan, HOU Lan-tian |
Institute of Infrared Optical Fibers & Sensors, Yanshan University, Key Laboratory of Metastable Material Science & Technology, Qinhuangdao 066004, China |
|
|
Abstract The numerical aperture is an important parameter of optical fiber, and the fiber with high numerical aperture can be well used in fiber laser and laser-induced fluorescence system. The numerical aperture of the photonic crystal fiber is different from that of traditional step optical fiber, which is closely related to the wavelength. In the present paper, a spectrometer was used to measure the numerical aperture of photonic crystal fiber, and a lot of refractive index photonic crystal fibers were measured and simulated to investigate the impact of wavelength, the diameter of air-hole and the pitch on numerical aperture. According to the measured numerical aperture, the parameters of fiber related with wavelength can be better studied, including nonlinearity coefficient, macro-bending loss, effective mode area, cut-off wavelength and so on, and satisfactory results were achieved.
|
Received: 2009-08-02
Accepted: 2009-12-05
|
|
Corresponding Authors:
GUO Yan-yan
E-mail: guoyanyan1018@126.com
|
|
[1] Pramod R W, Seongmin Ju, Won-Taek Han. Opt. Exp., 2008, 16(2): 1180. [2] Nader A L. Appl. Opt., 2004, 43(33): 6191. [3] Rahman B M A, Leung D M H, Obayya S S A, et al. Appl. Opt., 2008, 47(16): 2961. [4] Wadsworth W, Percival R, Bouwmans G, et al. Opt. Exp., 2003, 11(1): 48. [5] Furusawa K, Malinowski A, Price J, et al. Opt. Exp., 2001, 9(13): 714. [6] Roy A, Leproux P, Roy P, et al. J. Opt. Soc. Am. B, 2007, 24(4): 788. [7] Shibata S, Mitachi S, Takahashi S. Appl. Opt., 1980, 19(9): 1484. [8] YUAN Li-bo(苑立波). Experimental Technology of Fiber(光纤实验技术). Harbin: Engineering University of Harbin Press(哈尔滨:哈尔滨工程大学出版社), 2005. 99. [9] Shailendra K V, Sinha R K. Journal of Microwaves and Optoelectronics,2002, 2(6): 32. [10] Benjanmin G W. Opt. Exp., 2008, 16(12): 8532. [11] National Standardization Administration Committee. GB/T 15972.43. Specifications for Optical Fiber Methods GB/T 15972.43. Beijing: China Standard Press, 2008. [12] ZHANG Chun-xi, LI Yan, XU Hong-jie, et al(张春熹,李 彦,徐宏杰,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2008,28(7): 1689. [13] Wadsworth W J, Percival R M, Bouwmans G, et al. IEEE Photonics Technology Lett., 2004, 16(3): 807. [14] Petropoulos P, Heidepriem H E, Finazzi V, et al. Opt. Exp., 2003, 11(26): 3568. [15] Saitoh K, Masanori K. Opt. Exp., 2004, 12 (10): 2027. [16] Mortensen N A. Opt. Exp., 2002, 10(7): 341. [17] Sakai J,Kimura T. Appl. Opt., 1978, 17: 1499. [18] Nielsen M D, Mortensen N A, Albertsen M, et al. Opt. Exp., 2004, 12(8): 1775. [19] Sakai J. Appl. Opt., 1978, 17(7): 951. [20] Birks T A, Knight J C, Russell P St. J. Opt. Lett., 1997, 22(13): 961. [21] Marcuse D. Journal of Opt. Sco. Am., 1973, 63(11): 1369. [22] Folkenberg J R,Mortensen N A. Opt. Lett., 2003, 28(20): 1882. [23] Mortensen N A,Folkenberg J R. Opt. Lett., 2003, 28(20): 1879. [24] Kuhlmey B T. Opt. Lett.,2002, 27(19): 1684.
|
[1] |
WANG Yue1, 3, 4, CHEN Nan1, 2, 3, 4, WANG Bo-yu1, 5, LIU Tao1, 3, 4*, XIA Yang1, 2, 3, 4*. Fourier Transform Near-Infrared Spectral System Based on Laser-Driven Plasma Light Source[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1666-1673. |
[2] |
LI Jia-yi1, YU Mei1, LI Mai-quan1, ZHENG Yu2*, LI Pao1, 3*. Nondestructive Identification of Different Chrysanthemum Varieties Based on Near-Infrared Spectroscopy and Pattern Recognition Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1129-1133. |
[3] |
SU Jing-ming1, 2, 3, ZHAO Min-jie1, ZHOU Hai-jin1, YANG Dong-shang1, 2, HONG Yan3, SI Fu-qi1*. On-Orbit Degradation Monitoring of Environmental Trace Gases Monitoring Instrument Based on Level 0 Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 686-691. |
[4] |
CHENG Liang-xiao1, 2, TAO Jin-hua1*, ZHOU Hai-jin3, YU Chao1, FAN Meng1, WANG Ya-peng4, WANG Zhi-bao5, CHEN Liang-fu1. Evaluations of Environmental Trace Gases Monitoring Instrument (EMI) Level 1 Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3881-3886. |
[5] |
SUN Xue-peng1, 2, ZHANG Xiao-yun1, 2, SHAO Shang-kun1, 2, WANG Ya-bing1, 2, LI Hui-quan1, 2, SUN Tian-xi1, 2*. A Method Quickly to Measure the Size of the Confocal Volume of Confocal X-Ray Instrument[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3493-3497. |
[6] |
WU Yuan-jie1,2, YE Hui-qi1,2, HAN Jian1,2, XIAO Dong1,2*. Supercontinuum Generation Degradation of 1 040 nm Laser Pumped Photonic Crystal Fibers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3588-3594. |
[7] |
ZHAO Sen, LIANG Xiao-tian, YU Meng-ke, CAI Jing*. Study on the Inspection of Shooting Residues by Micro-Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3142-3146. |
[8] |
WAN Shun-kuan1, 2, LÜ Bo1, ZHANG Hong-ming1*, HE Liang1, FU Jia1, JI Hua-jian3, WANG Fu-di1, BIN Bin1, LI Yi-chao1, 2. Quick Measurement Method of Condensation Point of Diesel Based on Temperature-Compensation Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3111-3116. |
[9] |
LI Hao-guang1, 2, YU Yun-hua1, 2, PANG Yan1 , SHEN Xue-feng1, 2. Study on Characteristic Wavelength Extraction Method for Near Infrared Spectroscopy Identification Based on Genetic Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2437-2442. |
[10] |
ZHONG Ming-yu1, 2, 3, ZHOU Hai-jin2, SI Fu-qi2*, WANG Yu2, DOU Ke2, SU Jing-ming1, 2, 3. Reconstruction of Stack Plume Based on Imaging Differential Absorption Spectroscopy and Compressed Sensing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1708-1712. |
[11] |
WU Zhi-feng, LI Ling, DAI Cai-hong, WANG Yan-fei, XIE Yi-hang, CHENG Qiu-tong. Temperature and Humidity Influence in Field Spectroradiometer Measurement[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1639-1643. |
[12] |
ZHAO Xiao-rong1,2, LI Yan-hong1,2*. Study on the Relationship Between Urban Traffic Flow and Tropospheric NO2 Vertical Column Density in Oasis on the North Slope of Tianshan Mountain[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 345-353. |
[13] |
WANG Xiao-yu1, CUI Yong-zhao1, BI Wei-hong1,2*, FU Guang-wei1, KE Si-cheng1, WANG Wen-xin1. Research on Control Method of Graphene Layers Grown in Air Holes of Photonic Crystal Fiber Based on Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(12): 3659-3664. |
[14] |
CHEN Fang, GAO Chao, BAI Jie. Thickness Matching Design Between Splitter and Compensatorfor High Spectral Resolution Fourier Transform Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(12): 3941-3945. |
[15] |
XU Jin-li1, 2, HU Meng-ying1, 2, ZHANG Peng-peng1, 2, XING Xia1, 2, BAI Jin-feng1, 2, ZHANG Qin1, 2*. Application of High Pressure Pelletised Sample and LIBS in the Determination of Rare Earth Elements in Soil Samples[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(12): 3806-3811. |
|
|
|
|