光谱学与光谱分析 |
|
|
|
|
|
Raman Lidar Measuring Tropospheric Temperature Profiles With Many Rotational Raman Lines |
SU Jia1,2,ZHANG Yin-chao3,HU Shun-xing1,CAO Kai-fa1,ZHAO Pei-tao1,WANG Shao-lin1,XIE Jun1 |
1.Key Lab of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China2.Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031,China3.Beijing Institute of Technology, Beijing 100081,China |
|
|
Abstract Due to lower tropospheric aerosols, the Rayleigh and vibrational Raman methods can’t measure lower tropospheric temperature profiles accurately.By using N2 and O2 molecular pure rotational Raman scattering signals, lower tropospheric temperature profiles can be gained without influence of lower tropospheric aerosols.So we decide to use a pure rotational Raman Lidar to get lower tropospheric temperature profiles.At present, because the most light-splitting systems of pure rotational Raman Lidar measure temperature by gaining a single rotational Raman line, the signal to noise ratio (SNR) of these Lidar systems are very low.So we design a new kind of Lidar light-splitting system which can sum different rotational Raman lines and it can improve SNR.And we can find the sensitivity of the temperature of the ratios of multi rotational Raman lines is as same as single rotational Raman line’s through theoretical analysis.Moreover, we can obtain the temperature profiles with good SNR from this new the system with a normal laser and a small telescope up to several kilometers.At last, with the new light-splitting system, the lower tropospheric temperature profiles are measured from 0.3 km to 5 km altitude.They agree well with radiosonde observations, which demonstrate the results of our rotational Raman lidar are reasonable.
|
Received: 2007-03-26
Accepted: 2007-06-29
|
|
Corresponding Authors:
SU Jia
E-mail: sujia0804@163.com
|
|
[1] WU Yong-hua, LI Tao, ZHOU Jun(吴永华, 李 陶, 周 军).Chinese Journal of Atmospheric Sciences(大气科学), 2002, 26(5):706. [2] Balin I, Serikov I, Bobrovnikov S.Applied Physics B:Lasers and Optics, 2004, 79(6):778. [3] Nedelijkovic D, Hauchecome A, Chanin M L.IEEE Trans.Geosci.and Remote Sensing, 1993, 31:92. [4] Arshinov Y, Bobrovnikova S T,Serikova Ia.Proceedings of SPIE, 2001, 4397:456. [5] Ansmann A, Arshinov Y, Bobrovnikov S.in Fifth International Symposium on Atmospheric and Ocean Optics, Vladimir E.Zuev, Gennadii G.Matvienko, Eds., Proceedings of SPIE, 1998, 3583:492. [6] Arshimov U F, Bobrinov S M, Zuev V E.Appl.Opt, 1983, 22:2984. [7] Balsiger F, Paul Haris A T, Philbrick C R.SPIE, 1996, 2832:56. [8] Philbrick C R, Lysak D B.Proceedings of the Battlespace Atmospheric and Cloud Impacts on Military Operations (BACIMO), 1999, 2886:460. [9] Philbrick C R.Proceeding of Nineteenth International Laser Radar Conference, 1998, NASA/CP-1998-207671/PT1:289. [10] Pablo Ristori, Martin Froidevau, Todor Dinoev, et al.Proc.of SPIE, 2005, 5984:1. [11] Kim D, Spark, Cha H, et al.Appl.Phys B., 2006,82:1. [12] Arshinov Y, Bobrovnikov S,Serikov I.Appl.Opt., 2005, 44:3593. [13] Dukhyeon Kim,Hyungki Cha.Optics Letters, 2005, 30(13):1726. [14] Miles R B, Lempert W R, Forkey J N.Meas.Sci.Technol., 2001, 12:33. [15] HONG Guang-lie, ZHANG Yin-chao, ZHAO Meng-ran(洪光烈, 张寅超, 周孟然).Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2006, 26(7):1249. [16] ZHAO Yue-feng,ZHANG Yin-chao,HONG Guang-lie(赵曰峰, 张寅超, 洪光烈).Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2006, 26(5):794. [17] Whiteman D N.Appl.Opt., 2003, 42:2571. [18] Penney C M,Lapp M.J.O.S, 1974, 64:712. [19] Fouche.Appl.Phys.Lett., 1971, 18(12):579. [20] Fenner.J.Opt.Soc.Am., 1973, 63(1):73. |
[1] |
SHI Dong-chen,HUA Deng-xin*,LEI Ning, GAO Fei, WANG Li, YAN Qing, ZHOU Yi. Research of Solar-Blind Ultraviolet Raman Lidar for Water Vapor Measurement Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1430-1436. |
[2] |
MA Hui1, 2, LIU Dong1*, LI Wen-feng3, LIAO He3, XIE Chen-bo1, WANG Zhen-zhu1, WANG Bang-xin1, HUANG Jian1, WANG Ying-jian1, 2*. A Rapid and Accurate Optimizing Algorithm for IPDA Lidar Data Inversion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1014-1018. |
[3] |
RAO Zhi-min, HE Ting-yao*, HUA Deng-xin, CHEN Ruo-xi. Remote Sensing of Particle Mass Concentration Using Multi-Wavelength Lidar[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1025-1030. |
[4] |
YANG Bin1, GUO Hao-ran1, CHEN Xiao-long2, PAN Ke-wei2, GUI Xin-yang1, CAI Xiao-shu1, LIU Pei-jin3. Research on the Influence of Spectral Response on Radiation Spectroscopy Thermometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 638-642. |
[5] |
HONG Guang-lie1, ZHOU Yan-bo1,2, LIU Hao1, KONG Wei1, SHU Rong1,2*. Feasibility Study of Mars Rover’s Laser Induced Breakdown Spectroscopy Based Mie-Lidar Design[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 600-605. |
[6] |
FENG Ming-bo1,2, NIU Zheng1*, SUN Gang1. The Analysis of Vegetation Spectra Based on Multi-Band Lidar[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(06): 1809-1813. |
[7] |
WANG Li, TAN Lin-qiu, CHANG Bo, LU Geng-geng, GAO Fei, HUA Deng-xin* . Doppler Lidar with High Sensitivity and Large Dynamic Range for Atmospheric Wind Measurement[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(03): 958-963. |
[8] |
TENG Ji-yao1, 2, 3, QIN Kai1, 2, 3*, WANG Yun-jia1, 2, 3, LIN Li-xin1, 2, 3, SUN Xin-hui4 . Study on Automatic Identification of Aerosols Boundary Layer Height with Local Optimum Model Based on Lidar Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(02): 361-367. |
[9] |
LI Ren-bing1,2, SU Tie2, ZHANG Long2, BAO Wei-yi2, YAN Bo2, CHEN Li2, CHEN Shuang2 . Study on Line CARS for Temperature Measurement in Combustion Flow Field [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(12): 3968-3972. |
[10] |
GUI Xin-yang, Aymeric Alliot, YANG Bin*, ZHOU Wu, PING Li, CAI Xiao-shu . Research on Radiation Spectrum of Pulverized Coal Combustion Flame [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(11): 3492-3496. |
[11] |
LIU Yu-li1,2, XIE Chen-bo1*, SHANG Zhen1, ZHAO Ming1, CAO Kai-fa1, SUN Yue-sheng2. Retrieval and Analysis of Atmospheric Temperature Using a Rotational Raman Lidar Observation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(06): 1978-1986. |
[12] |
Lü Li-hui, LIU Wen-qing, ZHANG Tian-shu, LU Yi-huai, DONG Yun-sheng, CHEN Zhen-yi, FAN Guang-qiang, QI Shao-shuai. Two Data Inversion Algorithms of Aerosol Horizontal Distribution Detected by MPL and Error Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(07): 1774-1778. |
[13] |
TAO Zong-ming1, 2, LIU Dong2, WEI He-li2, MA Xiao-min1, SHI Bo1, NIE Miao1, ZHOU Jun2, WANG Ying-jian2 . The Estimation of Cirrus Cloud Particulate Shape Using Combined Simulation and a Three-Wavelength Lidar Measurement[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(07): 1739-1743. |
[14] |
GE Xian-ying, CHEN Si-ying*, ZHANG Yin-chao, CHEN He, GUO Pan, BU Zhi-chao, CHEN Sheng-zhe . The Echelle Grating Monochromator’s Design of Pure Rotational Raman Lidar [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(02): 567-570. |
[15] |
FAN Guang-qiang, LIU Jian-guo*, LIU Wen-qing, LU Yi-huai, ZHANG Tian-shu, DONG Yun-sheng, ZHAO Xue-song . A New Retrieval Method for Ozone Concentration at the Troposphere Based on Differential Absorption Lidar [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32(12): 3304-3308. |
|
|
|
|