光谱学与光谱分析 |
|
|
|
|
|
Remote Passive Detection of Flame Temperature of Solid Propellant Adulterating Nanoparticles |
ZHANG Li-ming1,ZHANG Lin1,LI Yan1,LIU Bing-ping1,2,WANG Xiao-fei1,3,WANG Jun-de1* |
1. Laboratory of Advanced Spectroscopy, Nanjing University of Science and Technology, Nanjing 210014, China2. Department of Chemsitry, Qufu Normal University, Qufu 273165, China3. Department of Chemsitry, Nanjing University, Nanjing 210092, China |
|
|
Abstract The flame temperature of three kinds of solid propellants was measured by passive remote sensing FTIR with the resolution of 1 cm-1. These three kinds of solid propellants are adulterate nano-scale metal oxide particles, adulterate normal metal oxide particles,and propellant without any adulterations. The main components of the solid propellant are nitrocellulose and nitroglycerin. The metallic oxides,including 6 nm CuO, 56 nm Fe2O3,16 nm NiO,and correspondingly the normal particles,were adulterated into the solid propellants respectively. The flame temperature was calculated through the fine structure of the emission fundamental band of H2O at 2.75 μm. The results of the flame temperature of the solid propellants adulterating nano-scale CuO, Fe2O3 and NiO are 3 089, 3 193 and 3 183 K, respectively. The temperatures of the three kinds of solid propellants were compared, and it was shown that there is no obvious difference in the flame temperature among the three kinds of solid propellants.
|
Received: 2004-12-18
Accepted: 2005-06-02
|
|
Corresponding Authors:
WANG Jun-de
|
|
Cite this article: |
ZHANG Li-ming,ZHANG Lin,LI Yan, et al. Remote Passive Detection of Flame Temperature of Solid Propellant Adulterating Nanoparticles[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2006, 26(03): 441-443.
|
|
|
|
URL: |
http://www.gpxygpfx.com/EN/Y2006/V26/I03/441 |
[1] Herget W F, Brasher J D. Applied Optics, 1979, 18(20): 3404. [2] Wang T S, Zhu C J, Wang J D, et al. Analytica Chimica Acta, 1995, 306: 249. [3] Wang J D, Wang X M, Li H Z, et al. Spectroscopy Letters, 1990, 23(4): 515. [4] Wang J D, Wang X M, Li H Z, et al. Spectroscopy Letters, 1991, 24(7&8): 975. [5] Wang J D, Huang M, Wang T S. Spectroscopy Letters, 1995, 28(1): 55. [6] WANG Jun-de, LI Yan(王俊德,李 燕). Temporally and Spatially Extension of Analytical Chemistry(分析化学在空间上的延伸). In:Advances in Analytical Chemistry(分析化学新进展). Ed. WANG Er-kang(汪尔康). Beijing:Science Press(北京:科学出版社), 2002. 363. [7] Li Y, Wang J D. Instrumentation Science and Technology, 2003, 31(1): 33. [8] ZHOU Xue-tie, LI Yan, CHEN Zuo-ru, WANG Jun-de(周学铁,李 燕,陈作如,王俊德). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2003, 23(3): 609. [9] LI Yan, WANG Jun-de, SUN Xiu-yun, ZHOU Xue-tie(李 燕,王俊德,孙秀云,周学铁). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2004, 24(8): 936. [10] WANG Jun-de, HUANG Mei, YIN Hui(王俊德,黄 梅,殷 惠). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 1995, 15(4): 49. [11] ZHOU Xue-tie, WANG Jun-de, LI Yan, LIU Da-bin(周学铁,王俊德,李 燕,刘大斌). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2003, 23(2): 407. [12] Sofiani A, Martin J P, Rolon J C, et al. Journal of Quantitative Spectroscopy & Radiative Transfer,2002, 73: 317. [13] Wormhoudt J, Conant J A, Herget W F. High Resolution Infrared Emission from Gaseous Sources. In:Infrared Method for Gaseous Measurements: Theory and Practice. Ed. Joda Wormhoudt. New York and Basel: Marcel Dekker, 1985. 1. [14] Hertzberg G. Molecular Spectra and Molecular Structure Ⅰ. Spectra of Diatomic Molecules. New York: Van Nostrand Reinhold, 1950. 94.
|
[1] |
YANG Bin1, GUO Hao-ran1, CHEN Xiao-long2, PAN Ke-wei2, GUI Xin-yang1, CAI Xiao-shu1, LIU Pei-jin3. Research on the Influence of Spectral Response on Radiation Spectroscopy Thermometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 638-642. |
[2] |
YU Ao-yang1, 2, YANG Rui-qin1*, WANG Meng2. Synthesis of La2(MoO4)3∶Eu Magnetically Fluorescent Nanoparticles and Its Application for Latent Fingerprint Development[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(01): 144-150. |
[3] |
CHEN Lei1, 2, LIU Mao-mao2, ZHANG Yong-jun2*, WANG Ya-xin2, HAN Xiao-xia3, ZHAO Bing3. Indirect Protein Detection by Versatile SERS Sensors[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(10): 3094-3098. |
[4] |
XU Chong1, SHI Wei-zhao1*, LI Zhi2. Laser Raman Spectra Analysis of Nanomaterial BaTiO3[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(05): 1408-1411. |
[5] |
ZHANG Mao-lin1, WANG Li-hua2*, LI Qi-jiang1, WU Jun-ming1. EDXRF and XAFS Analysis on the White Porcelains of Ding Kiln of Successive Dynasties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(05): 1540-1545. |
[6] |
LI Ren-bing1,2, SU Tie2, ZHANG Long2, BAO Wei-yi2, YAN Bo2, CHEN Li2, CHEN Shuang2 . Study on Line CARS for Temperature Measurement in Combustion Flow Field [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(12): 3968-3972. |
[7] |
GUI Xin-yang, Aymeric Alliot, YANG Bin*, ZHOU Wu, PING Li, CAI Xiao-shu . Research on Radiation Spectrum of Pulverized Coal Combustion Flame [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(11): 3492-3496. |
[8] |
SHI Xiao-feng, MENG Chen, MA Li-zhen, MA Hai-kuan, ZHANG Xin-min, MA Jun* . Detection of High Molecular Weight Polycyclic Aromatic Hydrocarbons in Mixed Colloid Solution of Spherical Au and Urchin-Like Au-Ag Alloy with Surface-Enhanced Raman Scattering [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(07): 2128-2133. |
[9] |
WANG Meng. Synthesis of LaPO4∶Ce, Tb Fluorescent Nanopowders and Their Applications in Nondestructive Development of Latent Fingerprints[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(05): 1412-1417. |
[10] |
WANG Meng . Synthesis of YVO4∶Eu Fluorescent Nanomaterials and Their Applications in Development of Latent Fingerprints [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(06): 1601-1605. |
[11] |
DOU Wen-hu1,2, HE Qiang1*, ZHOU Guang-ming2, KANG Qian-qian2, YANG Yuan-gao2, CHEN Jun2 . IR, Raman and DFT Studies of Sudan Red Ⅲ and Ⅳ [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32(12): 3247-3252. |
[12] |
ZHONG Jia-qi1,2,3, YU Geng-hua1,2,3, WANG Jin1,2, ZHAN Ming-sheng1,2* . Direct Determination of Hyperfine Structures and Isotope Shifts in the 6s5d 3D→6p5d 3F Transitions of Ba I [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32(01): 11-14. |
[13] |
LI Liu-cheng, WANG Zeng-qiang, LI Guo-fu, DUO Li-ping* . Study of Plasma Temperature Measurements for Oxygen Discharge [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2011, 31(10): 2651-2654. |
[14] |
CHEN Xiao-bo1, WANG Ce1, KANG Dong-guo2, Naruhito Sawanobori3, WANG Shui-feng1, LI Yong-liang1, WANG Ping1 . Improvement of Anti-Stokes Energy Transfer between Rare Earth Ions 2. Numerical Calculation and Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2010, 30(08): 2017-2022. |
[15] |
CHEN Xiao-bo1, WANG Ce1, LI Song1, Naruhito Sawanobori2, KANG Dong-guo3 . Improvement in the Calculation of Anti-Stokes Energy Transfer between Rare Earth Ions1. Experiment and Theoretical Basis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2010, 30(07): 1734-1737. |
|
|
|
|