光谱学与光谱分析 |
|
|
|
|
|
X-Ray Hardening Correction for ICT in Testing Workpiece |
PENG Guang-han1,2,CAI Xin-hua1,HAN Zhong3,YANG Xue-heng3 |
1. College of Physics and Electronic Science, Hunan University of Arts and Science, Changde 415000, China 2. College of Automation, Chongqing University, Chongqing 400030, China 3. College of Science, Chongqing University, Chongqing 400030, China |
|
|
Abstract Since energy spectrum of X-ray is polychromatic source in X-ray industrial computerized tomography, the variation of attenuation coefficient with energy leads to the lower energy of X-ray radiation being absorbed preferentially when X-ray is transmitting the materials. And the higher the energy of X-ray, the lower the attenuation coefficient of X-ray. With the increase in the X-ray transmission thickness, it becomes easier for the X-ray to transmit the matter. Thus, the phenomenon of energy spectrum hardening of X-ray takes place, resulting from the interaction between X-ray and the materials. This results in false images in the reconstruction of X-ray industrial computerized tomography. Therefore, hardening correction of energy spectrum of X-ray has to be done. In the present paper, not only is the hardening phenomenon of X-ray transmitting the materials analyzed, but also the relation between the X-ray beam sum and the transmission thickness of X-ray is discussed. And according to the Beer law and the characteristics of interaction when X-ray is transmitting material, and by getting the data of X-ray beam sum, the relation equation is fitted between the X-ray beam sum and X-ray transmission thickness. Then, the relation and the method of equivalence are carried out for X-ray beam sum being corrected. Finally, the equivalent and monochromatic attenuation coefficient fitted value for X-ray transmitting the material is reasoned out. The attenuation coefficient fitted value is used for product back-projection image reconstruction in X-ray industrial computerized tomography. Thus, the effect caused by X-ray beam hardening is wiped off effectively in X-ray industrial computerized tomography.
|
Received: 2007-06-26
Accepted: 2007-10-06
|
|
Corresponding Authors:
PENG Guang-han
E-mail: pengguanghan@yahoo.com.cn
|
|
[1] Krohn Barbara R, Silver Michael D. Materials Evaluation, 1990, 49(10): 1296. [2] de Paiva Rogerio Ferreira, Lynch John, Rosenberg Elisabeth, et al. NDT & International, 1998, 31(1): 17. [3] PENG Guang-han, YANG Xue-heng, HAN Zhong, et al(彭光含,杨学恒,韩 忠, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2005, 25(11):1880. [4] Hanke R, Bobel F. NDT & International, 1992, 25(2): 87. [5] PENG Guang-han, YANG Xue-heng, CAI Xin-hua, et al(彭光含,杨学恒,蔡新华, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2007, 27(4): 823. [6] Guy M J, Castellano-Smith I A, Flower M A, et al. IEEE, Transaction on Nuclear Science, 1998, 45(3): 1261. [7] ZHANG Li-ming, WEI Cai-ping, ZHENG Shi-rong(张李明, 魏彩屏, 郑世荣). Journal of China University of Science and Technology(中国科学技术大学学报), 1996, 26(4): 510. [8] PENG Guang-han, CAI Xin-hua, HAN Zhong, et al(彭光含,蔡新华,韩 忠,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2007,27(9):1882.
|
[1] |
FAN Qing-jie, SONG Yan, LAI Shi-quan*, YUE Li, ZHU Ya-ming, ZHAO Xue-fei. XRD Structural Analysis of Raw Material Used as Coal-Based Needle Coke in the Coking Process[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1979-1984. |
[2] |
WANG Yi-ya1, WANG Yi-min1*, GAO Xin-hua2. The Evaluation of Literature and Its Metrological Statistics of X-Ray Fluorescence Spectrometry Analysis in China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1329-1338. |
[3] |
HAN Bing1, SUN Dan-dan2*, WAN Wei-hao1, WANG Hui3, DONG Cai-chang2, ZHAO Lei3, WANG Hai-zhou3*. Element Segregation of Cast-Rolled 7B05 Aluminum Alloy Based on
Microbeam X-Ray Fluorescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1413-1419. |
[4] |
JIANG Xiao-yu1, 2, LI Fu-sheng2*, WANG Qing-ya1, 2, LUO Jie3, HAO Jun1, 2, XU Mu-qiang1, 2. Determination of Lead and Arsenic in Soil Samples by X Fluorescence Spectrum Combined With CARS Variables Screening Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1535-1540. |
[5] |
LI Xiao-li1, GAO Xin-hua2, WANG Yi-min3*, DENG Sai-wen3, WANG Yi-ya3, LI Song3. Review on the Application of X-Ray Fluorescence Spectrometry in Halogen Elements Analysis in Geological Materials[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 997-1009. |
[6] |
NI Zi-yue1, CHENG Da-wei2, LIU Ming-bo2, YUE Yuan-bo2, HU Xue-qiang2, CHEN Yu2, LI Xiao-jia1, 2*. The Detection of Mercury in Solutions After Thermal Desorption-
Enrichment by Energy Dispersive X-Ray Fluorescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1117-1121. |
[7] |
PAN Qiu-li1, SHAO Jin-fa1, LI Rong-wu2, CHENG Lin1*, WANG Rong1. Non-Destructive Analysis of Red and Green Porcelain in Qing Dynasty[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 732-736. |
[8] |
CUI Ming-fang1, ZHU Jian-hua2*, HU Rui1, CHEN Shang-qian3. Research on the Chemical Composition and Process Feature of Ancient Porcelain Produced in Dongmendu Kiln[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 726-731. |
[9] |
HUANG Yu-ying1, 2, 3, ZHONG Xin-yu2, 3. Progress of Synchrotron Radiation X-Ray Fluorescence Spectrometry in China and Overseas[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 333-340. |
[10] |
YANG Jiong1, 2, QIU Zhi-li1, 4*, SUN Bo3, GU Xian-zi5, ZHANG Yue-feng1, GAO Ming-kui3, BAI Dong-zhou1, CHEN Ming-jia1. Nondestructive Testing and Origin Traceability of Serpentine Jade From Dawenkou Culture Based on p-FTIR and p-XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 446-453. |
[11] |
JIANG Yan1, MAO Ling-lin3, WU Jun3, YANG Xi4, DAI Lu-lu1, YANG Ming-xing1, 2*. Scientific Analysis of Five Turquoise Beads Unearthed From Haochuan Cemetery in Suichang, Zhejiang[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 568-574. |
[12] |
WAN Xiao-ming1, 2, ZENG Wei-bin1, 2, LEI Mei1, 2, CHEN Tong-bin1, 2. Micro-Distribution of Elements and Speciation of Arsenic in the Sporangium of Pteris Vittata[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 478-482. |
[13] |
TANG Ming-zhu1, WANG Zhi-ying1, WANG Yun-shan2*, BAO Wei-jun2, YANG Gang2, SUN Yong3. Characterization of the Impurity Phases in Phosphogypsum by the EBSD-XPS Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 136-140. |
[14] |
WANG Xue-yuan1, 2, 3, HE Jian-feng1, 2, 3*, NIE Feng-jun2, YUAN Zhao-lin1, 2, 3, LIU Lin1, 2, 3. Decomposition of X-Ray Fluorescence Overlapping Peaks Based on Quantum Genetic Algorithm With Multi-Fitness Function[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 152-157. |
[15] |
LIU Ji-fu1, YANG Ming-xing1*, SU Yue1, LIU Yue2. Analysis of Material and Source of Archaic Jade From the Tomb of Marquis Yi of Zeng in Suizhou, Hubei Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 215-221. |
|
|
|
|