光谱学与光谱分析 |
|
|
|
|
|
Studies of Spectra Classification Based on Kernel Covering Algorithm |
YANG Jin-fu1,XU Xin1,WU Fu-chao1,ZHAO Yong-heng2 |
1. National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100080,China 2. National Astronomical Observatory, Chinese Academy of Sciences, Beijing 100012, China |
|
|
Abstract A kernel based covering algorithm, called the kernel covering algorithm (KCA), is proposed for the classification of celestial spectra. This algorithm is a combination of kernel trick with the covering algorithm, and is used to extract the support vectors in feature space. The experiments show that the classification result based on KCA is a little less than that based on SVM. However, KCA only involves the distance computation without the need to solve the quadratic programming problem. Also, KCA is insensitive to the width of gauss window. Although KCA has a comparable classification performance with the covering algorithm, it changes the distance between samples in feature space by the nonlinear mapping such that the distribution of samples is more adaptable to classify. Therefore, the number of KCA’s resulting support vectors is significantly smaller than that of the covering algorithm.
|
Received: 2005-12-06
Accepted: 2006-03-28
|
|
Corresponding Authors:
YANG Jin-fu
E-mail: yangjf@nlpr.ia.ac.cn
|
|
Cite this article: |
YANG Jin-fu,XU Xin,WU Fu-chao, et al. Studies of Spectra Classification Based on Kernel Covering Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2007, 27(03): 602-605.
|
|
|
|
URL: |
http://www.gpxygpfx.com/EN/Y2007/V27/I03/602 |
[1] LIU Rong, DUAN Fu-qing, LUO A-li(刘 蓉,段福庆,罗阿理). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2005,25(7):1155. [2] QIN Dong-mei, HU Zhan-yi, ZHAO Yong-heng(覃冬梅, 胡占义, 赵永恒). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2003, 23(1): 182. [3] Cortes C,Vapnik V N. Machine Learning, 1995,20:273. [4] Girosi F, Jones M, et al. Neural Computation, 1995,7(219): 269. [5] Seeger Matthias. International Journal of Neural Systems, 2004,14(2): 1. [6] Baudat G,Anouar F. Neural Computation, 2000,12(10):2385. [7] Scholkopf B, Smola A J, Müller K R. Neural Computation, 1998,10:1299. [8] YANG Jin-fu, WU Fu-chao, LUO A-li,et al(杨金福,吴福朝,罗阿理,等). Pattern Recognition and Artificial Intelligence(模式识别与人工智能),2006,19(3):368. [9] Zhang Ling,Zhang Bo. IEEE Transactions on Neural Networks, 1999,10(4):925. |
[1] |
LU Ya-kun1, QIU Bo1*, LUO A-li2, GUO Xiao-yu1, WANG Lin-qian1, CAO Guan-long1, BAI Zhong-rui2, CHEN Jian-jun2. Classification of 2D Stellar Spectra Based on FFCNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1881-1885. |
[2] |
FENG Rui-jie1, CHEN Zheng-guang1, 2*, YI Shu-juan3. Identification of Corn Varieties Based on Bayesian Optimization SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1698-1703. |
[3] |
LI Quan-lun1, CHEN Zheng-guang1*, SUN Xian-da2. Rapid Detection of Total Organic Carbon in Oil Shale Based on Near
Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1691-1697. |
[4] |
LIU Mei-chen, XUE He-ru*, LIU Jiang-ping, DAI Rong-rong, HU Peng-wei, HUANG Qing, JIANG Xin-hua. Hyperspectral Analysis of Milk Protein Content Using SVM Optimized by Sparrow Search Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1601-1606. |
[5] |
ZHANG Tian-liang, ZHANG Dong-xing, CUI Tao, YANG Li*, XIE Chun-ji, DU Zhao-hui, ZHONG Xiang-jun. Identification of Early Lodging Resistance of Maize by Hyperspectral Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1229-1234. |
[6] |
LIU Zhong-bao1, WANG Jie2*. Research on the Improvement of Spectra Classification Performance With the High-Performance Hybrid Deep Learning Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 699-703. |
[7] |
HUI Yun-ting1, WANG De-cheng1, TANG Xin2, PENG Yao-qi1, WANG Hong-da1, ZHANG Hai-feng1, YOU Yong1*. Detection of Sorghum-Sudan Grass Seed Germination Rate Based on Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 423-427. |
[8] |
JIANG Jie1, YU Quan-zhou1, 2, 3*, LIANG Tian-quan1, 2, TANG Qing-xin1, 2, 3, ZHANG Ying-hao1, 3, ZHANG Huai-zhen1, 2, 3. Analysis of Spectral Characteristics of Different Wetland Landscapes Based on EO-1 Hyperion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 517-523. |
[9] |
LI Ming-liang1, DAI Yu-jia1, QIN Shuang1, SONG Chao2*, GAO Xun1*, LIN Jing-quan1. Influence of LIBS Analysis Model on Quantitative Analysis Precision of Aluminum Alloy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 587-591. |
[10] |
QIN Shuang1, LI Ming-liang1, DAI Yu-jia1, GAO Xun1*, SONG Chao2*, LIN Jing-quan1. The Accuracy Improvement of Fe Element in Aluminum Alloy by Millisecond Laser Induced Breakdown Spectroscopy Under Spatial Confinement Combined With Support Vector Machine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 582-586. |
[11] |
CAO Qiu-hong, LIN Hong-mei, ZHOU Wei, LI Zhao-xin, ZHANG Tong-jun, HUANG Hai-qing, LI Xue-min, LI De-hua*. Water Quality Analysis Based on Terahertz Attenuated Total Reflection Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 31-37. |
[12] |
WU Ye-lan1, CHEN Yi-yu1, LIAN Xiao-qin1, LIAO Yu2, GAO Chao1, GUAN Hui-ning1, YU Chong-chong1. Study on the Identification Method of Citrus Leaves Based on Hyperspectral Imaging Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3837-3843. |
[13] |
LIN Hong-mei1, CAO Qiu-hong1, ZHANG Tong-jun1, LI Zhao-xin1, HUANG Hai-qing1, LI Xue-min1, WU Bin2, ZHANG Qing-jian3, LÜ Xin-min4, LI De-hua1*. Identification of Nephrite and Imitations Based on Terahertz Time-Domain Spectroscopy and Pattern Recognition[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3352-3356. |
[14] |
ZHANG Xu1, BAI Xue-bing1, WANG Xue-pei2, LI Xin-wu2, LI Zhi-gang3, ZHANG Xiao-shuan2, 4*. Prediction Model of TVB-N Concentration in Mutton Based on Near Infrared Characteristic Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3377-3384. |
[15] |
RUAN Zhen1, ZHU Peng-fei3, ZHANG Lei3, CHEN Rong-ze3, LI Xun-rong3, FU Xiao-ting3, HUANG Zheng-gu4, ZHOU Gang4, JI Yue-tong5, LIAO Pu1, 2*. Study on Identification of Non-Tuberculosis Mycobacteria Based on Single-Cell Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3468-3473. |
|
|
|
|