光谱学与光谱分析 |
|
|
|
|
|
Using Fourier Transform to Analyse Differential Optical Absorption Spectrum |
LIU Qian-lin1,WANG Li-shi2*,HUANG Xin-jian2 |
1. College of Environmental Science and Engineering of South China University of Technology, Guangzhou 510640, China2. College of Chemical Science of South China University of Technology,Guangzhou 510640, China |
|
|
Abstract According to the theory of differential optical absorption spectral technique, the differential optical absorption spectral monitoring equipment was designed. Aiming at two kinds of main pollutants, SO2 and NO2, in the atmosphere, this technique was used to monitor them. The present article puts forward the signal analysis method of Fourier transformation to process the above-mentioned two kinds of absorption spectra. The two approaches contain the removeal of noise and the fitting of the slow variety. On the frequency chart after the spectrum was transformed, the low frequency corresponded to the slow variety part and the high frequency corresponded to the noise part of the original spectrum, so through intercepting a certain frequency segment and using inverse Fourier transformation the slow variety part of the low frequency and the noise part of the high frequency of the absorption spectrum could be subtracted. After farther processing we can get a higher resolution differential absorption spectrum of the gas. According to the strength of the spectrum, we can calculate the concentration of the gas. After analysis and comparison with the conventional method, it is considered a new processing method of differential optical absorption spectral technique, and the method can fit the slow variety much better.
|
Received: 2007-03-25
Accepted: 2007-06-26
|
|
Corresponding Authors:
WANG Li-shi
E-mail: wanglsh@scut.edu.cn
|
|
[1] Noxon J F. Science, 1975, 189: 547. [2] Platt U, Perner D. Geophys. Res., 1980, 85: 7453. [3] Vandaele A C, Herxnans C, Carleer M. Urban Pollution Measurements by UV-Visible DOAS. In: Proceedings of the 6th FECS Conference on Chemistry and The Environment. Copenhagen, Denmark, 1998. 26. [4] Weibring O, Edner H,et al. Applied Physics.,1998, 67(B): 419. [5] Chiu K H, Sree U, Tseng S H, et al. Atmospheric Environment, 2005,39: 941. [6] XIE Pin-hua, LIU Wen-qing, ZHENG Zhao-hui, et al(谢品华, 刘文清, 郑朝晖, 等). Acta Photonica Sinica(光子学报),2000, 29(3): 271. [7] DONG Feng-zhong, LIU Wen-qing, LIU Jian-guo, et al(董凤忠, 刘文清, 刘建国, 等). Journal of Test and Measurement Technology(测试技术学报), 2005, 19(3): 119. [8] QIN Min, XIE Pin-hua, LIU Jian-guo, et al(秦 敏, 谢品华, 刘建国, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2005, 25(9): 1463. [9] Platt U. Optical and Laser Remote Sensing. New York: Springer-Verlag, 1983: 95. [10] Jinénez R, Taslakov M, Calpini B, et al. Applied Physics B, 2004, 78(34): 249. [11] SI Fu-qi, LIU Jian-guo, ZHENG Zhao-hui, et al(司福祺, 刘建国, 郑朝辉, 等). Chinese Journal of Quantum Electronics(量子电子学报), 2002, 19(6): 499. [12] ZHU Jun, LIU Wen-qing, LIU Jian-guo, et al(朱 军, 刘文清, 刘建国, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2005, 25(10): 1573. [13] Bacsick Z, McGregor J, Mink J. Food and Chemical Toxicology, 2007, 2(45): 266. [14] MAO Wan-peng, CAI Xiao-shu, CHENG Zhi-hai, et al(毛万朋, 蔡小舒, 程智海, 等). Journal of Engineering Thermophysics(工程热物理学报), 2004, 25(Supplement): 205. [15] Wang Yan, Li Ning, Tang Haitao. Differential Optical Absorption Spectrum Analysis by Digital Filtering. ISIST-3, Xi’an, China, 2004. 428. [16] Axelsson L. Sensors and Actuators B, 1995, 29: 328. [17] Platt U, Perner D. Geophys. Res., 1979, 84: 6329. [18] Bracewell R N, YIN Qin-ye, ZHANG Jian-guo(布雷斯韦尔, 殷勤业, 张建国). The Fourier Transform and Its Applications(傅里叶变换及其应用). Xi’an: Xi’an Transportation University Publishing Company(西安:西安交通大学出版社),2005. 10. [19] WANG Ji-sheng, YU Jun-xin(王计生, 喻俊馨). Journal of Sichuan University of Science and Technology(四川工业学院学报), 2003, 22(4): 47. [20] Hallstadius H, Unéus L, Wallin S. Measurement of Atmospheric Gases, 1991, 1433: 36. [21] WU Zhen, YU Qi-lian, ZHANG Fan, et al(吴 桢, 虞启琏, 张 帆, 等). Acta Apparatus and Instrument(仪器仪表学报), 2003, 24(5): 490. |
[1] |
XU Chen1, 2, HUA Xue-ming1, 2*, YE Ding-jian1, 2, MA Xiao-li1, 2, LI Fang1, 2, HUANG Ye1, 2. Study of the Effect of Interference during Multi-Wire GMAW Based on Spectral Diagnosis Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 1993-1997. |
[2] |
HU Hua-ling1, 2, 3, LI Meng2, 3*, HE Xiao-song2, 3, XI Bei-dou2, 3, ZHANG Hui2, 3, LI Dan2, 3, HUANG Cai-hong2, 3, TAN Wen-bing2, 3. FTIR Spectral Characteristics of Rice Plant Growing in Mercury Contaminated Soil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2081-2085. |
[3] |
MA Dian-xu1, LIU Gang1*, OU Quan-hong1, YU Hai-chao1, LI Hui-mei1, SHI You-ming2. Discrimination of Common Wild Mushrooms by FTIR and Two-Dimensional Correlation Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2113-2122. |
[4] |
FAN Hua1, YAO Gao-yang2, LIU Wei3, XING Zi-hui4, SHI Jin-ming5, GAO Bai1*, CHEN Yang6. Experimental Study on the Treatment of Mercury Contained Soil by Thermal Analytical Low Temperature Plasma Based on Cold Atomic Absorption Spectrophotometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2279-2283. |
[5] |
ZHANG Hao1, 2, 5, WANG Lin3, LONG Hong-ming2, 4, 5. Study on Composite Activating Mechanism of Alkali Steel Slag Cementations Materials by XRD and FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2302-2306. |
[6] |
LIU Yuan-yuan1, CHEN Jian-jun2, QIU Bo1*, FAN Xiao-dong1, WEI Shi-ya1, SONG Tao1, DUAN Fu-qing3*. A Processing Method for Low SNR Repetitive Observation Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2311-2314. |
[7] |
CHEN Ying1, ZHAO Zhi-yong1, HE Lei1, HAN Shuai-tao1, ZHU Qi-guang2, ZHAI Ying-jian3, LI Shao-hua3. Resonance Spectral Characteristic and Refractive Index Sensing Mechanism of Surface Coated Waveguide Grating[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2320-2324. |
[8] |
SUN Heng1, JIN Hang2,3, HU Qiang1, KANG Ping-de1, CHEN Jun-fei1, HE Jia-wei1*, WANG Yuan-zhong2,3*. Infrared Spectroscopy Combined with Chemometrics for Rapid Determination of Total Flavonoids in Dendrobium Officinale[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1702-1707. |
[9] |
LI Yun1,2,3, ZHANG Ji1,2, LIU Fei4, XU Fu-rong3, WANG Yuan-zhong1,2*, ZHANG Jin-yu1,2,3*. Prediction of Total Polysaccharides Content in P. notoginseng Using FTIR Combined with SVR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1696-1701. |
[10] |
ZHENG Xiao-jun, GAO Li-juan, ZHAO Xue-fei*, ZHU Ya-ming, CHENG Jun-xia. Spectral Analysis of Molecular Structure of Water-Soluble Pitch[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1819-1823. |
[11] |
ZHOU Mu-chun1, ZHAO Qi1, CHEN Yan-ru1, SHAO Yan-ming2. Carbon Content Measurement of BOF by Radiation Spectrum Based on Support Vector Machine Regression[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1804-1808. |
[12] |
XU Kun1, 2, 3, WANG Ju-lin1, 2, 3*, HE Qiu-ju4. The Influence of Alum in Alum Gelatin Solution on Cellulose,Calcium Carbonate and Gelatin in XUAN Paper[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1829-1833. |
[13] |
REN Xiu-na, WANG Quan, ZHAO Jun-chao, LI Rong-hua, Mukesh Kumar Awasthi, WANG Mei-jing, ZHANG Zeng-qiang*. The Effect of Ca-Bentonite on Spectra of Dissolved Organic Matter during Pig Manure Composting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1856-1862. |
[14] |
LI Xiao-nan1, LIU Guo-qiang1, 2, HU Li-li1. Research on Nuclear Magnetic Resonance High-Quality Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1358-1361. |
[15] |
LI Wen-huan1, ZHANG Jin-jie1, YANG Cong-tai2, LIU Li-na1, XU Jie1, LIU Xiao-huan1*, FU Shen-yuan1*. Preparation and Spectral Analysis of Melanmine-Formaldehyde Resin Modified by Benzoguanamine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1481-1485. |
|
|
|
|