光谱学与光谱分析 |
|
|
|
|
|
Synthesis, Characterization and Antimicrobial Activity of Konjac Glucomannan Derivative with Quaternary Ammonium Salts |
LEI Wan-xue1,2,XU Xia3,LIN Fang1,YANG Qin-huan1,LI Zhen-jun1,ZHANG Ting-you1* |
1. The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065,China2. Department of Chemistry, Henan Institute of Education, Zhengzhou 450001, China3. College of Pharmacy, Zhengzhou University, Zhengzhou 450052, China |
|
|
Abstract Methacryloxylethyl tetradecyl dimethyl ammonium bromide was grafted onto konjac glucomannan using ceric ammonium nitrate as an initiator, and the konjac glucomannan derivative with quaternary ammonium salts was obtained. The konjac glucomannan derivative was investigated by hydrogen nuclear magnetic resonance spectroscopy (1H NMR), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), and Zeta sizer nano series. The antimicrobial properties of the konjac glucomannan derivative against selected microorganisms were tested by the quantitative suspension method. The results revealed that (1) methacryloxylethyl tetradecyl dimethyl ammonium bromide can be grafted onto the surface of the konjac glucomannan, and the percentage grafting increases with increasing the amount of methacryloxylethyl tetradecyl dimethyl ammonium bromide. (2) The Zeta potential showed that the isoelectric point of the konjac glucomannan and the modified konjac glucomannan is pH 4.5 and pH 9.9, respectively. The shift of the isoelectric point is due to the quaternary ammonium groups. (3) The obtained konjac glucomannan derivative has significant inhibition effect on the growth of microorganisms, and the bactericidal rates in 15 min for E.coil (8099), S. aureus (ATCC 6538) and C. albicans (ATCC10231) were 99.99%, 99.99% and 98.13%, respectively.
|
Received: 2007-10-06
Accepted: 2007-12-29
|
|
Corresponding Authors:
ZHANG Ting-you
E-mail: lwxscu@163.com
|
|
[1] Kaname K, Kohsaku O, Kenichi H, et al. Carbohydrate Polymer, 2003, 53: 183. [2] Kato K, Matsuda K. Agricultural and Biological Chemistry, 1969, 33: 1446. [3] Maeda M, Shimahara M, Sugiyama N. Agric. Biol. Chem., 1980, 44: 245. [4] Cescutti P, Campa C, Delben F, et al. Carbohydrate Research, 2002, 337(24): 2505. [5] YANG Guang, XIONG Xiao-peng, ZHANG Li-na. Journal of Membrane Science, 2002, 201: 161. [6] PANG Jie, LIN Qiong, ZHANG Pu-sheng, et al(庞 杰, 林 琼, 张普生, 等). Chinese Journal Structure Chemistry(结构化学), 2003,22(6): 633. [7] WANG Kang, HE Zhi-min. International Journal of Pharmaceutics, 2002, 244: 117. [8] CHEN Hsiao-Ling, Ph D. R. D. Nautrition, 2006, 22: 112. [9] Pathak C P, Barman S P, Philbrook M C, et al. US Patent, 6 639 014, 2003. [10] CHEN Li-gui, LIU Zhi-lan, ZHUO Ren-xi. Polymer, 2005, 46: 6274. [11] ZHANG Ying-qing, XIE Bi-jun, GAN Xin. Carbohydrate Polymer, 2005, 60: 27. [12] Nussinovitch A. US Patent, 6 680 184, 2004. [13] YU Hui-qun, HUANG Yi-hong, YING Hou, et al. Carbohydrate Polymers, 2007, 69: 29. [14] TANG R P, DU Y M, ZHENG H, et al. Journal of Applied Polymer Science, 2003, 88(5): 1095. [15] GAO S J, ZHANG L N, CAO J L. Journal of Applied Polymer Science, 2003, 90(8): 2224. [16] YANG G, HUANG Q L, ZHANG L N, et al. Journal of Applied Polymer Science, 2004, 92(1): 77. [17] YU Hui-qun, HUANG Yi-hong, YING Hou, et al. Carbohydrate Polymers, 2007, 69: 29. [18] XU Xia, YANG Qin-huan, LEI Wan-xue, et al(徐 霞, 杨秦欢, 雷万学, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2006, 26(3): 444. [19] MA Guo-xin, WANG Cheng-long, FAN Duo-wang, et al(马国欣, 王成龙, 范多旺, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2006, 26(3): 434. [20] LU Dian-nan, ZHOU Xuan-rong, XING Xiao-dong, et al(卢滇楠, 周轩榕, 邢晓东, 等). Acta Polymeric Sinica(高分子学报), 2004, (1): 107. |
[1] |
ZHU Ya-ming1, 2, ZHAO Xue-fei1, 2*, GAO Li-juan1, CHENG Jun-xia1. Quantitative Analysis of Structure Changes on Refined Coal Tar Pitch with Curve-Fitted of FTIR Spectrum in Thermal Conversion Process[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2076-2080. |
[2] |
HU Hua-ling1, 2, 3, LI Meng2, 3*, HE Xiao-song2, 3, XI Bei-dou2, 3, ZHANG Hui2, 3, LI Dan2, 3, HUANG Cai-hong2, 3, TAN Wen-bing2, 3. FTIR Spectral Characteristics of Rice Plant Growing in Mercury Contaminated Soil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2081-2085. |
[3] |
MA Dian-xu1, LIU Gang1*, OU Quan-hong1, YU Hai-chao1, LI Hui-mei1, SHI You-ming2. Discrimination of Common Wild Mushrooms by FTIR and Two-Dimensional Correlation Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2113-2122. |
[4] |
ZHANG Hao1, 2, 5, WANG Lin3, LONG Hong-ming2, 4, 5. Study on Composite Activating Mechanism of Alkali Steel Slag Cementations Materials by XRD and FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2302-2306. |
[5] |
YE Ting1, QIAO Hai-xia1, HUANG Yong1,2*, GUO Jia-chi1, MA Meng-chu1, RU Ping1, CHEN Fang-fang1, YUAN Cui-fang1, LIU Huan1, SU Zhuo-bin3, ZHANG Xue-jiao1*, GAO Yuan4. Preparation and Characterization of Silicon, Silver, Fluorine Co-Modified Hydroxyapatite Nano-Biofilms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1198-1202. |
[6] |
CHEN Hang1, MEI Chang-tong1, LUO Wen2, XU Mo-su3, REN Yi4, YIN Wen-xuan4*. Comparative Study on Microstructure of Flocculant/Catkin with Natural Fiber[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 929-932. |
[7] |
ZHANG Li-juan1, 2, WANG Shu-tao1*, YANG Zhe1, CHENG Peng-fei1. The Determination and Characterization of Main Components in Patchouli Based on the XRF, PXRD and FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3889-3892. |
[8] |
HU Wen-hua, DONG Jun, CHI Zi-fang*, REN Li-ming. Preparation and Spectroscopy Characterization of Magnetic Pb(Ⅱ)-Ion Surface Imprinted Polymers(Fe3O4/GO-IIP)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(11): 3499-3503. |
[9] |
ZHANG Fang-kun, LIU Tao*, GUAN Run-duo. In-situ ATR-FTIR Measurement of Solution Concentration Based on Temperature-Related Spectra Difference Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(10): 3011-3015. |
[10] |
YE Shu-bin1,2, SHEN Xian-chun1,2, XU Liang1*, JIN Ling1, HU Rong1,2, HU Yang1,2, LI Ya-kai1,2, LIU Jian-guo1, LIU Wen-qing1. A Fast Qualitative Analysis Method of Fourier Transform Infrared Spectra Based on LASSO Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(10): 3037-3041. |
[11] |
LIANG Xiao-wen1, SHI Lei2*. Design of a Moving Mirror Scanning System for Portable Interferometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(10): 3255-3259. |
[12] |
YE Song1,ZHANG Bing-ke1, 2,YANG Hui-hua1,ZHANG Wen-tao1,DONG Da-ming2*. Identification of Beef Spoilage Processes Using the Infrared Spectrum of Volatiles[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(09): 2751-2755. |
[13] |
GE Tao1, ZHANG Ming-xu1, MA Xiang-mei2. XPS and FTIR Spectroscopy Characterization about the Structure of Coking Coal in Xinyang[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(08): 2406-2411. |
[14] |
YE Shu-bin1,2, XU Liang1*, LI Ya-kai1, LIU Jian-guo1, LIU Wen-qing1 . Study on Recognition of Cooking Oil Fume by Fourier Transform Infrared Spectroscopy Based on Artificial Neural Network [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(03): 749-754. |
[15] |
JIA Tai-xuan1, ZHANG Nan1*, GUO Yao1, LU You-chang1, TIAN Da-yong1, LI Hong-liang2 . Preparation of Rubber Accelerator Tetrabenzylthiuramdisulfide and Its Spectral Analysis [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(03): 881-883. |
|
|
|
|