|
|
|
|
|
|
Spectral Pre-Processing Based on Convolutional Neural Network |
JIAO Qing-liang1, LIU Ming1*, YU Kun2, LIU Zi-long2, 3, KONG Ling-qin1, HUI Mei1, DONG Li-quan1, ZHAO Yue-jin1 |
1. Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
2. Henan Key Laboratory of Infrared Materials and Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang 453007, China
3. Institute of Optics & Laser Metrology,National Institute of Metrology, Beijing 100013,China |
|
|
Abstract The techniques of Spectral Pre-Processingis important in qualitative spectral analysis. They were aiming at the problems of poor preservation of weak peaks in denoising algorithms, over-deduction of real spectral in baseline correction algorithms, inaccurate location of spectral peaks method, and error accumulation caused by serial use of various preprocessing algorithms. In this paper, we design a convolutional neural network (CNN). This CNN consists of two modules: baseline correction and denoising module and peak detection module, which are connected and output independently. In the ideal conditions, according to the spectrumlinear function, the ideal spectrum can be obtained by fitting the spectral peak location. Therefore, connecting the output of the spectral peak detection module to the baseline correction and denoising module can improve the accuracy of baseline correction and denoising effectively; and high-quality spectrum is the basis ofspectral peak detection. Hence the interconnection of two modules can improve the quality of the reconstructed spectrum effectively.The spectral baseline correctionand denoising module is a feed forward network consisting of several convolution layers, activation functions and batch normalization layers.The characteristic peak detection module is a multi-scale feature fusion network, that uses different-sized convolution kernels to divide the feature spectrum into different scales. The module fuses feature of different sizes to estimate the location of the characteristic spectral peak. During the training of the proposed CNN, the spectrum obtained by spectrophotometers with different temperatures, humidity and preheating times were used as input samples. The spectrum obtained from standard instruments of the National Institute of Metrology was used as output samples.In the experiment, noise with different SNR and Gaussian baselines with different peak values were added to the synthesized spectrum applied to evaluate the superiority of proposed CNN in denoising, baseline correction and spectral characteristic peak detection. Then the near-infrared spectrum of the corn, which was added noise and baseline, were taken as samples. Moreover, they, which were preprocessed using preprocessing algorithms, were applied to estimate the concentration of water and oilin corn by partial least squares. The estimated concentration compares with the real concentration, which is measured with a standard instrument, to prove the advantage of the proposed CNN. Experiments show that theproposed CNN can achieve good results in both single-task and multi-task preprocessing. Moreover, the spectrum preprocessed by the proposed CNN can get the most accurate results in quantitative analysis, which demonstrates that the proposed CNN has strong practical value.
|
Received: 2020-12-29
Accepted: 2021-04-11
|
|
Corresponding Authors:
LIU Ming
E-mail: bit411liu@bit.edu.cn
|
|
[1] Bai Yanru, Liu Quan. Biomedical Optics Express, 2020, 11(1): 200.
[2] Delwiche S R, Reeves J B. Applied Spectroscopy, 2010, 64(1): 73.
[3] Chen Hao, Xu Weilian, Broderick Neil, et al. Journal of Raman Spectroscopy, 2018, 49(9): 1529.
[4] QIU Xuan-bing, SUN Dong-yuan, LI Chuan-liang, et al(邱选兵, 孙冬远, 李传亮, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2019, 39(2): 628.
[5] Bertinetto Carlo G,Vuorinen Tapani. Applied Spectroscopy, 2014, 68(2): 155.
[6] Zhang Zhimin, Chen Shan, Liang Yizeng. Analyst, 2010, 135(5): 1138.
[7] Baek Sung-June, Park Aaron, Ahn Young-Jin, et al. Analyst, 2015, 140(1): 250.
[8] Zhang Zhimin, Tong Xia, Ying Peng, et al. Analyst, 2015, 140(23): 7955.
[9] YU Kun, JIAO Qing-liang, LIU Zi-long, et al(于 坤, 焦青亮, 刘子龙, 等). Acta Optica Sinica(光学学报), 2019, 39(9): 0930008.
[10] Joel Wahl, Mikael Sjdahl, Kerstin Ramser. Applied Spectroscopy, 2020, 74(4): 427.
[11] Roberto C Carvajal, Luis E Arias, Hugo O. Applied Spectroscopy, 2016, 70(4): 604.
[12] Zhang Xiaolei, Xu Jinfan, Yang Jie, et al. Analytica Chimica Acta, 2020, 1119: 41. |
[1] |
HE Nian, SHAN Peng*, HE Zhong-hai, WANG Qiao-yun, LI Zhi-gang, WU Zhui. Study on the Fractional Baseline Correction Method of ATR-FTIR
Spectral Signal in the Fermentation Process of Sodium Glutamate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1848-1854. |
[2] |
JI Jiang-tao1, 2, LI Peng-ge1, JIN Xin1, 2*, MA Hao1, 2, LI Ming-yong1. Study on Quantitative Detection of Tomato Seedling Robustness
in Spring Seedling Transplanting Period Based on VIS-NIR
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1741-1748. |
[3] |
PENG Ren-miao1, 2, XU Peng-peng2, ZHAO Yi-mo2, BAO Li-jun1, LI Cheng2*. Identification of Two-Dimensional Material Nanosheets Based on Deep Neural Network and Hyperspectral Microscopy Images[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1965-1973. |
[4] |
JIANG Rong-chang1, 2, GU Ming-sheng2, ZHAO Qing-he1, LI Xin-ran1, SHEN Jing-xin1, 3, SU Zhong-bin1*. Identification of Pesticide Residue Types in Chinese Cabbage Based on Hyperspectral and Convolutional Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1385-1392. |
[5] |
WANG Zhong, WAN Dong-dong, SHAN Chuang, LI Yue-e, ZHOU Qing-guo*. A Denoising Method Based on Back Propagation Neural Network for
Raman Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1553-1560. |
[6] |
JI Rong-hua1, 2, ZHAO Ying-ying2, LI Min-zan2, ZHENG Li-hua2*. Research on Prediction Model of Soil Nitrogen Content Based on
Encoder-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1372-1377. |
[7] |
ZHAO Yong1, HE Men-yuan1, WANG Bo-lin2, ZHAO Rong2, MENG Zong1*. Classification of Mycoplasma Pneumoniae Strains Based on
One-Dimensional Convolutional Neural Network and
Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1439-1444. |
[8] |
WENG Shi-zhuang*, CHU Zhao-jie, WANG Man-qin, WANG Nian. Reflectance Spectroscopy for Accurate and Fast Analysis of Saturated
Fatty Acid of Edible Oil Using Spectroscopy-Based 2D Convolution
Regression Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1490-1496. |
[9] |
TAN Ai-ling1, CHU Zhen-yuan1, WANG Xiao-si1, ZHAO Yong2*. Detection of Pearl Powder Adulteration Based on Raman Spectroscopy and DCGAN Data Enhancement[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 769-775. |
[10] |
DENG Shi-yu1, 2, LIU Cheng-zhi1, 4*, TAN Yong3*, LIU De-long1, ZHANG Nan1, KANG Zhe1, LI Zhen-wei1, FAN Cun-bo1, 4, JIANG Chun-xu3, LÜ Zhong3. A Combination of Multiple Deep Learning Methods Applied to Small-Sample Space Objects Classification[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 609-615. |
[11] |
WANG Xin-qiang1, 3, HU Feng1, 3, XIONG Wei2, YE Song1, 3, LI Shu1, 3, GAN Yong-ying1, 3, YIN Shan1, 3, WANG Fang-yuan1, 3*. Research on Raman Signal Processing Method Based on Spatial Heterodyne[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 93-98. |
[12] |
ZHU Hong-qiu1, CHENG Fei1, HU Hao-nan1, ZHOU Can1, 2*, LI Yong-gang1. Denoising Algorithm of Spectral Signal Based on FFT SVD[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 277-281. |
[13] |
YU Guo-wei1, MA Ben-xue1,2*, CHEN Jin-cheng1,3, DANG Fu-min4,5, LI Xiao-zhan1, LI Cong1, WANG Gang1. Vis-NIR Spectra Discriminant of Pesticide Residues on the Hami Melon Surface by GADF and Multi-Scale CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3701-3707. |
[14] |
DUAN Long1, YAN Tian-ying1, WANG Jiang-li2, 3, YE Wei-xin1, CHEN Wei1, GAO Pan1, 2*, LÜ Xin2, 3*. Combine Hyperspectral Imaging and Machine Learning to Identify the Age of Cotton Seeds[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3857-3863. |
[15] |
HE Xiong-fei1, 2, HUANG Wei3, TANG Gang3, ZHANG Hao3*. Mechanism Investigation of Cement-Based Permeable Crystalline Waterproof Material Based on Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3909-3914. |
|
|
|
|