|
|
|
|
|
|
Chelation Assignments of GaⅢ, GeⅣ and SiⅣ Metal Ions With Pipemidic Acid Antibiotic Drug: Synthesis, Spectroscopic Characterizations and Biological Studies |
Abeer A El-Habeeb |
Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia |
|
|
Abstract Pipemidic acid is one of an efficient quinolone antibacterial drug. Thecomplexitybetween pipemidic acid “Hpipc” withgallium(Ⅲ), germanium(Ⅳ) and silicon(Ⅳ) afforded three molecular formulas of [Ga(pipc)2(H2O)(Cl)]·4H2O, 1, [Ge(pipc)2(Cl)2]·4H2O, 2 and[Si(pipc)2(Cl)2]·4H2O, 3 complexes. These three new complexes were characterized based on elemental analysis, conductance, FTIR, UV-Vis, 1HNMR and XRD spectroscopy. The pipc chelate exhibits O, O coordinated through the carbonyl (C═O) and carboxylato (COO) of both oxygen atoms. Six coordinate geometry was proposed regarding complexes of 2 and 3, so the axial position was occupied by two coordinated chlorideatoms. In vitro, the antibacterial, antifungal, and anti-cancer assessments concerning the synthesized pipc complexes were scanned. These complexes have an excellent anti-microbial activity.
|
Received: 2020-01-17
Accepted: 2020-05-06
|
|
|
[1] Toscano M A, Serrao A, Ventimiglia B, et al. Miner. Urol., 1982,34:257.
[2] Hirai K, Ito A, Abe Y, et al. Antimicrob. Agents Chemother., 1981,19:188.
[3] Yang L, Li W, Tao D L, et al. Synth. React. Inorg. Met. -Org. Chem.,1999,29:1485.
[4] Yang L, Tao D, Yang X, et al. Chem. Pharm. Bull., 2003,51:494.
[5] Szymanska B, Skrzypek D, Kovala-Demertzi D, et al. Spectrochim. Acta A,2006,63:518.
[6] Efthimiadou E K, Sanakis Y, Katsaros N, et al. Polyhedron, 2007,26:1148.
[7] Siebenlist R, Frühauf H W, Vrieze K, et al. Organometallics, 2002,21:5628.
[8] Scholz H, Gorls H. Inorg. Chem., 1996, 35: 4378.
[9] Gerber G B, Léonard A. Mutat. Res.—Rev. Mutat. Res., 1997,387:141.
[10] Singh H L, Singh J B, Bhanuka S, et al. Arab Univ. Basic and Appl. Sci., 2017, 23: 1.
[11] Nielsen F H. FASEB J., 1991, 5: 2661.
[12] Schwarz K. Significance and Functions of Silicon in Warmbloodedanimals. Review and Outlook. In: Bendz G, Lindquist I, Editors. Biochemistry of Silicon and Relatedproblems. New York: Plenum Press,1978. 207.
[13] Seaborn C D, Nielsen F H. Biol. Trace. Elem. Res., 2002, 89: 251.
[14] Seaborn C D, Briske-Anderson M, Nielsen F H. Biol. Trace. Elem. Res., 2002, 87: 133.
[15] Mjos K D, Cawthray J F, Polishchuk E, et al. Dalton Trans., 2016, 45: 13146.
[16] Bauer A W, Kirby W A, Sherris C, et al. Am. J. Clin. Pathology, 1996, 45: 493.
[17] Mosmann T. J. Immunol. Methods, 1983, 65: 55.
[18] Gomha S M, Riyadh S M, Mahmmoud E A, et al. Heterocycles, 2015, 91(6): 1227.
[19] El-Habeeb A A, Refat M S. J. Mol. Struct., 2019,1175:65.
[20] Iacovino R, Rapuano F, Caso J V, et al. Int. J. Mol. Sci., 2013,14:13022.
[21] Kovala-Demertzi D, Galani A, Demertzis M A, et al. J. Inorg. Biochem., 2004,98:358.
[22] Turel I. Coord. Chem. Rev., 2002, 232: 27.
[23] Fonseca I, Martinej-Carrera S, Garcia-Blanco S. Acta Crystallogr. Sect. C (Cr. Str. Comm.),1986,42:1618.
[24] Szymanska B, Skrzypek D, Kovala-Demertzi D, et al. Spectrochimica Acta Part A,2006,63:518.
[25] Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Fourth ed., Wiley, New York, 1986.
[26] Deacon G B, Phillips R J. Coord. Chem. Rev., 1980, 33: 227.
[27] Uivarosi V. Molecules, 2013, 18: 11153.
[28] Sadeek S A, El-Shwiniy W H, Zordok W A, et al. Spectrochim. Acta, Part A, 2011,78:854.
[29] Chan J, Thompson A L, Jones M W, et al. Inorg. Chim. Acta, 2010, 363(6): 1140.
[30] Efthimiadou E K, Sanakis Y, Katsaros N, et al. Polyhedron,2007,26:1148.
[31] Cullity B D, Stock S R. Elements of X-Ray Diffraction, 3rd ed., New York: Prentice Hall, 2001. 389.
[32] Wang M, Gao L, Dong S, et al. Front Plant Sci., 2017,8:701. |
[1] |
MA Fang1, HUANG An-min2, ZHANG Qiu-hui1*. Discrimination of Four Black Heartwoods Using FTIR Spectroscopy and
Clustering Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1915-1921. |
[2] |
ZHANG Dian-kai1, LI Yan-hong1*, ZI Chang-yu1, ZHANG Yuan-qin1, YANG Rong1, TIAN Guo-cai2, ZHAO Wen-bo1. Molecular Structure and Molecular Simulation of Eshan Lignite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1293-1298. |
[3] |
WANG Fang-fang1, ZHANG Xiao-dong1, 2*, PING Xiao-duo1, ZHANG Shuo1, LIU Xiao1, 2. Effect of Acidification Pretreatment on the Composition and Structure of Soluble Organic Matter in Coking Coal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 896-903. |
[4] |
HU Chao-shuai1, XU Yun-liang1, CHU Hong-yu1, CHENG Jun-xia1, GAO Li-juan1, ZHU Ya-ming1, 2*, ZHAO Xue-fei1, 2*. FTIR Analysis of the Correlation Between the Pyrolysis Characteristics and Molecular Structure of Ultrasonic Extraction Derived From Mid-Temperature Pitch[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 889-895. |
[5] |
YANG Jiong1, 2, QIU Zhi-li1, 4*, SUN Bo3, GU Xian-zi5, ZHANG Yue-feng1, GAO Ming-kui3, BAI Dong-zhou1, CHEN Ming-jia1. Nondestructive Testing and Origin Traceability of Serpentine Jade From Dawenkou Culture Based on p-FTIR and p-XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 446-453. |
[6] |
HE Xiong-fei1, 2, HUANG Wei3, TANG Gang3, ZHANG Hao3*. Mechanism Investigation of Cement-Based Permeable Crystalline Waterproof Material Based on Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3909-3914. |
[7] |
ZHOU Jing1,2, ZHANG Qing-qing1,2, JIANG Jin-guo2, NIE Qian2, BAI Zhong-chen1, 2*. Study on the Rapid Identification of Flavonoids in Chestnut Rose (Rosa Roxburghii Tratt) by FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3045-3050. |
[8] |
Moamen S. Refat1*, Mahmoud Salman2, Akram M. El-Didamony3, Hammad Fetooh3, Eman S.E. Abd El-Maksoud3,Mohamed Y. El-Sayed3,4. Spectroscopic and Fluorescence Studies on the Trivalent Ce, Eu, Nd and La Metal Ions Rhodamine C Florescent Dye Complexes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3311-3315. |
[9] |
Samy M. El-Megharbel*,Moamen S. Refat. In First Time: Synthesis and Spectroscopic Interpretations of Manganese(Ⅱ), Nickel(Ⅱ) and Mercury(Ⅱ) Clidinium Bromide Drug Complexes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3316-3320. |
[10] |
Samy M. El-Megharbel*, Moamen S. Refat. Preparations and Spectroscopic Studies on the Three New Strontium(Ⅱ), Barium(Ⅱ), and Lead(Ⅱ) Carbocysteine Complexes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2975-2979. |
[11] |
WANG Yi1, 2, LI Chang-rong1, 2*, ZHUANG Chang-ling1, 2. Study on Alumina/Lanthanum Oxide X-Ray Diffraction and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2480-2483. |
[12] |
LI Huan-tong1, 2, CAO Dai-yong3*, ZHANG Wei-guo1, 2, WANG Lu4. XRD and Raman Spectroscopy Characterization of Graphitization Trajectories of High-Rank Coal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2491-2498. |
[13] |
YU Chun-mei, ZHANG Nan, TENG Hai-peng. Investigation of Different Structures of Coals Through FTIR and Raman Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2050-2056. |
[14] |
YE Xu1, QIU Zhi-li1, 2*, CHEN Chao-yang3, ZHANG Yue-feng1. Nondestructive Identification of Mineral Inclusions by Raman Mapping: Micro-Magnetite Inclusions in Iridescent Scapolite as Example[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2105-2109. |
[15] |
SUN Feng1, 2, YAN Qing-qing1, WANG Lu1, SUN Zhen-fei1. Study on the Conditions of Hydrothermal Synthesis of Chinese Purple BaCuSi2O6 and the Analysis of Its Products[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2284-2287. |
|
|
|
|