|
|
|
|
|
|
Theoretical Analysis and Experiment of Raman Enhancement of Graphene-Ordered Silver Nanopores |
XING Hao-jian, YIN Zeng-he, ZHANG Jie*, ZHU Yong |
The Key Laboratory of Optoelectronic Technology & System, Ministry of Education, Chongqing University, Chongqing 400044, China |
|
|
Abstract We design a reusable graphene-ordered silver nanohole (GE-AgNHs) substrate. A uniform periodic nanopore array is etched on the silver film by surface plasmons (SPs) photolithography. Graphene is transferred to AgNHs by wet transfer method. Graphene not only provides a molecular adsorption platform, but also serves as a reference and calibration layer to improve surface-enhanced Raman reproducibility. When the silver film is exposed to the air, it is easily oxidized. The graphene covers the surface of the silver film to block the air, thereby slowing down the oxidation of the silver film. The substrate is characterized by optical microscopy, field emission scanning electron microscopy (SEM) and Raman spectroscopy. From the SEM characterization results, it can be seen that the silver nanopores are evenly distributed. Meanwhile, the electric field distribution (|E|) of different aperture bases is simulated by Finite-Difference Time-Domain (FDTD) simulation. The simulation results show that the electric field strength increases slightly with the decrease of the aperture. The maximum electric field strength Emax≈11 V·m-1 is obtained at D=220 nm, and the enhancement factor is calculated to be ~1.46×104. Many experiments were carried on. Firstly, we performed a Raman mapping test on the GE-AgNHs substrate. The results show that the RSD values of graphene D, G and 2D peaks are 18.3%, 22.1% and 19.8%, respectively, with good uniformity. Secondly, Raman test and quantitative analysis are carried on using crystal violet (CV) solution at concentrations of 10-8~10-4 mol·L-1. The exponential fitting of the relative intensity k(k=I@1 178/I@2D) in the range of 10-8~10-4 mol·L-1, the fitting degree R2=97.7%; if the data of 10-4 mol·L-1 is neglected, it performs a linear fit with a fit of 96.8%. Finally, SERS repeatability is performed on the GE-AgNHs substrate with a concentration of 10-12 mol·L-1 rhodamine 6G (R6G) solution as the probe molecule and sodium borohydride solution as the cleaning solution. It can be seen from the optical micrograph and the Raman spectrum that there is a small number of impurities on the GE before cleaning; after cleaning, a clean GE Raman signal is obtained. The Raman signal of R6G can be detected before and after cleaning, indicating that the substrate repeatability is good; the Raman intensity is maintained at 50% at 773 cm-1.
|
Received: 2019-07-22
Accepted: 2019-11-29
|
|
Corresponding Authors:
ZHANG Jie
E-mail: zhangjie@cqu.edu.cn
|
|
[1] Fleischmann M, Hendra P J, Mcquillan A J. Chemical Physics Letters, 1974, 26(2): 163.
[2] Wu Y, Yu W, Yang B, et al. Analyst, 2018, 143: 2363.
[3] LIU Yan-de, ZHANG Yu-xiang, WANG Hai-yang(刘燕德, 张宇翔, 王海阳). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2018, 38(1): 123.
[4] Zhang J, Zhang X, Chen S, et al. Carbon, 2016, 100: 395.
[5] Ryu Y, Kang G, Lee C W, et al. RSC Advances, 2015, 5(93): 76085.
[6] Radha B, Lim S H, Saifullah M S M, et al. Scientific Reports, 2013, 3(1): 1078.
[7] Zhao J, Sun W, Sun W, et al. Journal of Materials Chemistry C, 2014, 2(46): 9987.
[8] Zhan H, Cheng F, Chen Y, et al. Composites Part B:Engineering, 2016, 84: 222.
[9] Tang J, Zeng C, Wang Y, et al. Plasmonics, 2015, 10(3): 563.
[10] Liu Y, Lu Z W, Hasi W L, et al. Analytical Methods, 2017, 9(47): 6622.
[11] Shen W, Lin X, Jiang C, et al. Angewandte Chemie International Edition, 2015, 54(25): 7308.
[12] Li C, Liu A, Zhang C, et al. Optics Express, 2017, 25(17): 20631.
[13] Geim A K, Novoselov K S. Nature Materials, 2007, 6(3): 183.
[14] Nair R R, Blake P, Grigorenko A N, et al. Science, 2008, 320(5881): 1308.
[15] Zhu H, Liu A, Li D, et al. Chemical Communications, 2017, 53(22): 3273.
[16] Gong T, Zhang J, Zhu Y, et al. Carbon, 2016, 102: 245.
[17] Quan J, Zhang J, Li J, et al. Carbon, 2019, 147: 105.
[18] Zhang X, Zhang X, Luo C, et al. Small, 2019, 15(11): e1805516.
[19] Ansar S M, Ameer F S, Hu W, et al. Nano Letters, 2013, 13(3): 1226. |
[1] |
ZHANG Li-sheng. Photocatalytic Properties Based on Graphene Substrate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1058-1063. |
[2] |
LIU Su-ya-la-tu, WANG Zong-li, PANG Hui-zhong, TIAN Hu-qiang, WANG Xin *, WANG Jun-lin*. Terahertz Broadband Tunable Metamaterial Absorber Based on Graphene and Vanadium Dioxide[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1257-1263. |
[3] |
DENG Ya-li1, LI Mei2, WANG Ming2*, HAO Hui1*, XIA Wei1. Surface Plasmon Resonance Gas Sensor Based on Silver/Titanium Dioxide Composite Film[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 743-748. |
[4] |
WANG Zi-xiong, XU Da-peng*, ZHANG Yi-fan, LI Jia-jia. Research Progress of Surface-Enhanced Raman Scattering Detection Analyte Molecules[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 341-349. |
[5] |
WAN Xiao-ming1, 2, ZENG Wei-bin1, 2, LEI Mei1, 2, CHEN Tong-bin1, 2. Micro-Distribution of Elements and Speciation of Arsenic in the Sporangium of Pteris Vittata[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 470-477. |
[6] |
HUANG Hui1, 2, TIAN Yi2, ZHANG Meng-die1, 2, XU Tao-ran2, MU Da1*, CHEN Pei-pei2, 3*, CHU Wei-guo2, 3*. Design and Batchable Fabrication of High Performance 3D Nanostructure SERS Chips and Their Applications to Trace Mercury Ions Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3782-3790. |
[7] |
LONG Jie, LI Jiu-sheng*. Terahertz Phase Shifter Based on Grating-Liquid Crystal Hybrid Structure[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2717-2722. |
[8] |
FU Xing-hu, WANG Zhen-xing, MA Shuang-yu, ZHAO Fei, LU Xin, FU Guang-wei, JIN Wa, BI Wei-hong. Preparation and Properties of Micro-Cavity Silver Modified Fiber SERS Probe[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2800-2806. |
[9] |
GUI Bo1, 2, YANG Yu-dong1, ZHAO Qian1, 2, SHI Meng1, MAO Hai-yang1, 3*, WANG Wei-bing1, CHEN Da-peng1, 3. A SERS Substrate for On-Site Detection of Trace Pesticide Molecules Based on Parahydrophobic Nanostructures[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2499-2504. |
[10] |
SUN Ning, CHEN Jun-fan, ZHANG Jie*, ZHU Yong. The Forming Mechanism of Surface Morphology of Nanostructures and Its Effect on Graphene Raman Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1821-1827. |
[11] |
ZHANG Can, ZHANG Jie*, DOU Xin-yi, ZHU Yong. Connection of Absorption and Raman Enhancement Characteristics of Different Types of Ag Nanoparticles[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1816-1820. |
[12] |
DOU Xin-yi, ZHANG Can, ZHANG Jie*. Effects of Process Parameters on Double Absorption Resonance Peaks of Au Nanoparticles[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1446-1451. |
[13] |
LIU Xue-mei, WANG Xiao-lin, QIU Zeng-feng, WANG Ya-dong, ZHANG Bin, XU Chao*, YIN Hong-zong*. Surface Plasmon Resonance Sensing Technology is Applied to Small Molecule Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 511-516. |
[14] |
WANG Xiao-yu1, CUI Yong-zhao1, BI Wei-hong1,2*, FU Guang-wei1, KE Si-cheng1, WANG Wen-xin1. Research on Control Method of Graphene Layers Grown in Air Holes of Photonic Crystal Fiber Based on Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(12): 3659-3664. |
[15] |
ZHANG Lei, ZHANG Xia*, WENG Yi-jin, LIU Xiao. Preparation and Properties of Ag/PANI Multifunction Nanozymes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3399-3403. |
|
|
|
|