光谱学与光谱分析 |
|
|
|
|
|
Fluorescence Determination of Trace Se with the Hydride-KI3-Rhodamine 6G System |
LIANG Ai-hui1, LI Yuan1, HUANG Shan-shan1, LUO Yang-he1, 2, WEN Gui-qing1, JIANG Zhi-liang1* |
1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Conservation of Ministry of Education, Guangxi Normal University, Guilin 541004, China2. Hezhou University, Hezhou 542899, China |
|
|
Abstract Se is a necessary trace element for human and animals, but the excess intake of Se caused poison. Thus, it is very important to determination of Se in foods and water. The target of this study is development of a new, sensitive and selective hydride generation-molecular fluorescence method for the determination of Se. In 0.36 mol·L-1 sulfuric acid, NaBH4 as reducing agent, Se (Ⅳ) is reduced to H2Se. Using I-3 solution as absorption liquid, I-3 is reduced to I- by H2Se. When adding rhodamine 6G, Rhodamine 6G and I-3 form association particles,which lead to the fluorescence intensity decreased . When Se(Ⅳ) existing, Rhodamine 6G and I-3 bind less, And the remaining amount of Rhodamine 6G increase. So the fluorescence intensity is enhanced. The analytical conditions were optimized, a 0.36 mol·L-1 H2SO4,21.6 g·L-1 NaBH4,23.3 μmol·L-1 rhodamine 6G, and 50 μmol·L-1 KI3 were chosen for use. When the excitation wavelength is at 480nm, the Rayleigh scattering peak does not affact the fluorescence recording, and was selected for determination of Se. Under the selected conditions, Se(Ⅳ) concentration in the 0.02~0.60 μg·mL-1 range and the increase value of the fluorescence intensity (ΔF) at 562 nm linear relationship. The linear regression equation is ΔF562 nm=12.6c+20.9. The detection limit was 0.01 μg·mL-1. The influence of coexistence substances on the hydride generation-molecular fluorescence determination of 5.07×10-6 mol·L-1 Se(Ⅳ) was considered in details. Results showed that this new fluorescence method is of high selectivity, that is, 0.5 mmol·L-1 Ba2+, Ca2+, Zn2+ and Fe3+, 0.25 mmol·L-1 Mg2+, 0.05 mmol·L-1 K+, 0.2 mmol·L-1 Al3+, 0.025 mmol·L-1 Te(Ⅵ) do not interfere with the determination. The influence of Hg2+, Cd2+ and Cu2+ that precipitate with Se(Ⅳ), can be eliminated by addition of complex reagent. This hydride generation-molecular fluorescence method has been applied to determination of trace Se in water samples, with a recovery of 91.8%~107.1%.
|
Received: 2014-01-13
Accepted: 2014-05-05
|
|
Corresponding Authors:
JIANG Zhi-liang
E-mail: zljiang@mailbox.gxnu.edu.cn
|
|
[1] Schrauzer G N, white D A, Schneider C J. Bioinorganic Chem., 1977, 7(1): 23. [2] LIU Chang-jiu, YANG Xi-qun, LIU Ji-sheng(刘长久,杨细群,刘继声). Chin. J. Anal. Chem.(分析化学), 2001,29(9):1030. [3] XIE Hong-zhi, CHEN Liang, ZHOU Ji-kan(解宏智,陈 亮,周纪侃). J. Anal. Instru.(分析测试学报),1998,17(1):61. [4] ZHANG Jun, FU Ting-zhi, CAO You-qin(章 军,傅庭治,曹幼琴). Chin. J. Anal. Chem.(分析化学),1995, 23(1): 49. [5] Robert S B, Lewis L J, Craig C F. Anal. Chem.,1972, 44(13): 2195. [6] Hossain M D. Talanta,2012, 88(1): 30. [7] Luo G. Anal. Lett.,2012, 45(17): 2493. [8] Sengupta M K, Dasgupta P K. Anal. Chem.,2011, 83(24): 9378. [9] Ohira S I, Idowu A D, Dasgupta P K. Anal. Chem.,2010, 82(9): 3467. [10] Wang Y, Xie J. Talanta, 2013, 112(8): 123. [11] Cobo-Fernandez M G, Palacios M A. Fresenius J Anal. Chem.,1995, 351(4-5): 438. [12] Liang A H, Wei Y Y, Wen G Q, et al. RSC Advances, 2013, 3(31): 12585. [13] FAN Zhi-hong(樊智虹). Chin. J. Environ. Sci. Technology(环境科学与技术), 2011, 34(1): 117. |
[1] |
GONG Ai-qin1*, JIN Dang-qin1, ZHU Xia-shi2. A Fluorescence Spectroscopic Study of the Interaction between Trelagliptin Succinate and Bovin Serum Albumine and Its Analytical Application[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(01): 157-160. |
[2] |
MA Xue-hong1, SONG Bai-ling2, XIAO Wen-jun2, GENG Jing2, LI Xin-xia1*, CHEN Jian3. Study on Interaction between Alliin and Bovine and Hunman Serum Albumin with Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(06): 1826-1830. |
[3] |
HU Yong, WU Xiao-yong*, ZHONG Nan-jing, XU Jin-rui . Study on the Conformation of Soybean Selenoprotein Solution with Spectroscopy Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(09): 2874-2878. |
[4] |
ZHANG Li-hua1, Arkin IBURAIM2* . The Establishment of the Method of the Fiber Optic Chemical Sensor Synchronous Absorption-Fluorescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(03): 755-758. |
[5] |
XIONG Chao1,2, GE Liang-quan1*, LIU Duan3, ZHANG Qing-xian1, GU Yi1, LUO Yao-yao1, ZHAO Jian-kun1 . Influence of the Experiment Energy Dispersive X-Ray Fluorescence Measurement of Uranium by Different Excitation Source[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(03): 838-841. |
[6] |
ZHANG Xiao-tong, ZHAO Chun-liu*, ZHOU Yu-meng, DONG Qian-min, LANG Ting-ting, JIN Shang-zhong. Preparation and SERS Study of Silver Microstructures with Dendritic Shape[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(10): 2952-2957. |
[7] |
ZHANG Shuo1,2 . Microsecond Pulsed Hollow Cathode Lamp as Enhanced Excitation Source of Hydride Generation Atomic Fluorescence Spectrometry [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(09): 2412-2419. |
[8] |
ZHOU Jing-rong1, DENG Dong-yan1, HUANG Ke1, TIAN Yun-fei2*, HOU Xian-deng1,2* . Simultaneous Determination of Se and Te in Ores by HG-AFS After Online Preconcentration with Nano-TiO2 Immobilized on Silica Gel[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(09): 2401-2406. |
[9] |
NI Run-xiang1, 2, LUO Kun-li1* . Determination of Total Selenium and Arsenic in Coal by Wet Digestion Hydride Generation Atomic Fluorescence Spectrometry (HG-AFS)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(05): 1404-1408. |
[10] |
ZHANG Xiu-qing, PENG Jun, LING Jian*, LIU Chao-juan, CAO Qiu-e, DING Zhong-tao . Fluorescence Resonance Energy Transfer Detection of Cobalt Ions by Silver Triangular Nanoplates and Rhodamine 6G[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(04): 951-955. |
[11] |
WANG Ji-xun, GAO Xun*, LI Qi, ZHENG Yi-ni, LIN Jing-quan . Study of the Air Plasma Expansion Dynamics by Fluorescence Method [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(09): 2472-2475. |
[12] |
ZHOU Na1, 2, LUO He-dong2, LI Na1, 2, LI Yao-qun1* . Determination of Benzo(α)pyrene in Food with Microwave-Assisted Extraction[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(03): 787-790. |
[13] |
QIAN Wei, JIANG Qian, WANG Ru-hai, GONG Hua, HAN Yong . Determination of Trace Selenium in Plants by Hydride Generation Atomic Fluorescence Spectrometry with Program Temperature- Controlled Graphite Digestion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(01): 235-240. |
[14] |
CUI Jian1, 2, ZHAO Xue-hong1*, WANG Yan1, XIAO Ya-bing3, JIANG Xue-hui1, DAI Li1 . Research on Optimization of Mathematical Model of Flow Injection-Hydride Generation-Atomic Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(01): 246-251. |
[15] |
GUO Qiang, LI Chun, JIA Zhi-jun, YUAN Guang* . Effect of Silver/Zinc Selenide Core-Shell Structure Spheres on the Infrared Absorption Properties of Sodium Nitrate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(10): 2625-2628. |
|
|
|
|