|
|
|
|
|
|
Molecular Structure and Molecular Simulation of Eshan Lignite |
ZHANG Dian-kai1, LI Yan-hong1*, ZI Chang-yu1, ZHANG Yuan-qin1, YANG Rong1, TIAN Guo-cai2, ZHAO Wen-bo1 |
1. Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
2. State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
|
|
|
Abstract As a critical fossil energy, lignite has a huge resource, wide distribution, and a low comprehensive utilization rate. Investigations regarding the molecular structure model of lignite are beneficial for pre-judging the chemical reaction mechanism and reaction path of lignite in pyrolysis, liquefaction and gasification, thereby improving its comprehensive utilization. Eshan lignite was studied by Fourier transform infrared spectroscopy, 13C Nuclear magnetic resonance spectroscopy and X-ray photoelectron spectroscopy in this paper. Moreover, the structural unit parameters of carbon, oxygen and nitrogen of Eshan lignite were obtained. According to these parameters, the molecular structure model of Eshan lignite was established and optimized by using the quantum chemical modeling method in the Gaussian 09 computing platform. The results indicate that the content of aromatic carbon and aliphatic carbon is 39.20% and 49.51%, respectively. In detail, the aromatic carbon structure mainly includes benzene and naphthalene, and the ratio of aromatic bridgehead carbon to surrounding aromatic carbon is 0.07. The aliphatic carbon structure mainly contains methylene, methyl and oxy-aliphatic carbon. Furthermore, the oxygen atoms mainly exist in hydroxyl, ether oxygen, carboxyl and carbonyl. Moreover, the nitrogen structure mainly involves pyridine. Based on the results of ultimate analysis and 13C nuclear magnetic resonance spectroscopy analysis, the molecular formula of Eshan lignite was calculated as C153H137O35N2 after eliminating the influence of water by thermogravimetric experiment. The initial structural model of Eshan lignite was constructed via the connecting structural unit. The PM 3 basis set of semi-empirical method and density functional theory M06-2X/3-21G basis set were used to optimize the initial molecular configuration. The optimized model has obvious three-dimensional characteristics. Among these, the aromatic rings arrange irregularly in space, and the distance between every aromatic ring is far. The aromatic carbon structures are mainly connected by methylene, ether oxygen, carbonyl ester and aliphatic ring. The oxygen functional groups mainly distributed at the edge of molecular and aliphatic structures possess many side chains. The simulated infrared spectrum of the molecular model was obtained by analyzing the vibration frequency of the optimized molecular model, and it agrees with the experimental infrared spectrum well, representing the accuracy and rationality of the molecular structure model of Eshan lignite. This molecular structure model is conducive to understanding the physicochemical properties of Eshan lignite more intuitively and revealing its macroscopic properties. Meanwhile, the molecular structure model can provide a theory basis for further research on lignite pyrolysis, liquefaction and gasification.
|
Received: 2021-03-15
Accepted: 2021-05-10
|
|
Corresponding Authors:
LI Yan-hong
E-mail: liyh_2004@163.com
|
|
[1] Wang Dandan, He Runxia, Wang Bin, et al. RSC Advances, 2017, 7: 19833.
[2] Lv Jinghui, Wei Xianyong, Zhang Yangyang, et al. Fuel, 2019, 253: 1042.
[3] Kaushik S, Pratik S D. Fuel, 2020, 279: 118539.
[4] Lei Zhao, Yang Ding, Zhang Yunhe, et al. Journal of Fuel Chemistry & Technology, 2017, 7: 769.
[5] Jiang Jingyu, Yang Weihua, Yuanping Chen, et al. Fuel, 2019, 239: 559.
[6] Liu Jiaxun, Jiang Yuanzhen, Yao Wang, et al. Energy & Fuels, 2019, 33(7): 6215.
[7] MA Ru-jia, ZHANG Shuai, HOU Dan-dan, et al(马汝嘉, 张 帅, 侯丹丹, 等). Journal of China Coal Society(煤炭学报), 2019, 44(6): 1827.
[8] Bian Jiejing, Li Xia, Zeng Fangui, et al. Energy & Fuels, 2019, 33: 12905.
[9] Feng L, Zhao Guangyao, Zhao Yingya, et al. Fuel, 2017, 203: 924.
[10] Yan Jingchong, Lei Zhiping, Li Zhanku, et al. Fuel, 2020, 268: 117038.
[11] Lv Jinghui, Wei Xianyong, Zhang Yangyang, et al. Fuel, 2019, 253: 1042.
[12] Meng Xianliang, Gao Mingqiang, Chu Ruizhi, et al. Chinese Journal of Chemical Engineering, 2017, 25(9): 1314.
[13] Lu Youzhi, Feng Li, Jiang Xiangang, et al. Journal of Molecular Modeling, 2018, 24(6): 135.
[14] Lin Hualin, Lian Jun, Liu Yeping, et al. Fuel, 2019, 240: 84.
[15] FENG Wei, GAO Hong-feng, WANG Gui, et al(冯 炜, 高红凤, 王 贵, 等). CIESC Journal(化工学报), 2019, 70(4): 1522.
|
[1] |
YU Zhi-rong, HONG Ming-jian*. Near-Infrared Spectral Quantitative Analysis Network Based on Grouped Fully Connection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1735-1740. |
[2] |
WANG Yi-ya1, WANG Yi-min1*, GAO Xin-hua2. The Evaluation of Literature and Its Metrological Statistics of X-Ray Fluorescence Spectrometry Analysis in China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1329-1338. |
[3] |
TAN Yang1, WU Xiao-hong2, 3*, WU Bin4, SHEN Yan-jun1, LIU Jin-mao1. Qualitative Analysis of Pesticide Residues on Chinese Cabbage Based on GK Improved Possibilistic C-Means Clustering[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1465-1470. |
[4] |
TANG Guang-tong1, YAN Hui-bo1, WANG Chao-yang1, LIU Zhi-qiang1, LI Xin1, YAN Xiao-pei1, ZHANG Zhong-nong2, LOU Chun2*. Experimental Investigation on Hydrocarbon Diffusion Flames: Effects of Combustion Atmospheres on Flame Spectrum and Temperature[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1654-1660. |
[5] |
SONG Hong-yan, ZHAO Hang, YAN Xia, SHI Xiao-feng, MA Jun*. Adsorption Characteristics of Marine Contaminant Polychlorinated Biphenyls Based on Surface-Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 704-712. |
[6] |
ZHOU Jun1, 2, YANG Yang2, YAO Yao2, LI Zi-wen3, WANG Jian3, HOU Chang-jun1*. Application of Mid-Infrared Spectroscopy in the Analysis of Key Indexes of Strong Flavour Chinese Spirits Base Liquor[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 764-768. |
[7] |
LI Xue-ping1, 2, 3, ZENG Qiang1, 2, 3*. Development and Progress of Spectral Analysis in Coal Structure Research[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 350-357. |
[8] |
GAO Le-le1, ZHONG Liang1, DONG Hai-ling1, LAI Yu-qiang5, LI Lian1,3*, ZANG Heng-chang1, 2, 3, 4*. Characterization of Moisture Absorption Process of Stevia and Rapid Determination of Rebaudioside a Content by Using Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 415-422. |
[9] |
HAN Yu1, SONG Shao-zhong2*, ZHANG Jia-huan3, TAN Yong1*, LIU Chun-yu1, ZHOU Yun-quan1, QU Guan-nan1, HAN Yan-li4, ZHANG Jing3, HU Yu3, MENG Wei-shi3, LIU Huan-jun5, ZHANG Yi-xiang1, LI Jia-yi1. Research on Soybean Bacterial Disease Markers Based on Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 459-463. |
[10] |
GONG Ge-lian1, 2, YOU Li-bing3, LI Cong-ying4, FANG Xiao-dong3, SUN Wei-dong4, 5, 6. Advances in Equipment for Deep Ultra-Violet Excimer Laser Ablation Coupled Plasma Mass and Optical Emission Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 555-560. |
[11] |
JIANG Jie1, YU Quan-zhou1, 2, 3*, LIANG Tian-quan1, 2, TANG Qing-xin1, 2, 3, ZHANG Ying-hao1, 3, ZHANG Huai-zhen1, 2, 3. Analysis of Spectral Characteristics of Different Wetland Landscapes Based on EO-1 Hyperion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 524-529. |
[12] |
CHEN Fu-shan1, WANG Gao-min1, WU Yue1, LU Peng2, JI Zhe1, 2*. Advances in the Application of Confocal Raman Spectroscopy in Lignocellulosic Cell Walls Pretreatment[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 15-19. |
[13] |
JIA Wen-bao1, TANG Xin-ru1, ZHANG Xin-lei1, SHAO Jin-fa2, XIONG Gen-chao1, LING Yong-sheng1, HEI Dai-qian3, SHAN Qing1*. Study on Sample Preparation Method of Plant Powder Samples for Total Reflection X-Ray Fluorescence Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3815-3821. |
[14] |
PENG Jian-wen1, XIAO Chong1, SONG Qiang1, PENG Zhong-chao1, HUANG Ruo-sen1, YANG Ya-dong3, TANG Gang1, 2, 3*. Flame Retardant Mechanism Investigation of Thermoplastic Polyurethane Composite/Ammonium Polyphosphate/Aluminum Hydroxide Composites Based on Spectroscopy Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3901-3908. |
[15] |
YU Fan1, LI He-ping1, ZHAO Tian-yu1, LIANG Zhuo-wen2, ZHAO Hang1, WANG Shuang1*. Deep-Surface Analysis of Multi-Layered Turbid Samples Using Inverse Spatially Offset Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3456-3461. |
|
|
|
|